Buch, Englisch, Band 344, 237 Seiten, Paperback, Format (B × H): 170 mm x 242 mm, Gewicht: 451 g
Temporal Analysis, Scheduling and Cost Minimization
Buch, Englisch, Band 344, 237 Seiten, Paperback, Format (B × H): 170 mm x 242 mm, Gewicht: 451 g
Reihe: Lecture Notes in Economics and Mathematical Systems
ISBN: 978-3-540-52664-3
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Wirtschaftswissenschaften Betriebswirtschaft Management Unternehmensorganisation & Entwicklungsstrategien
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
1 Basic Concepts.- 1.1 Directed Graphs and Project Networks.- 1.2 GERT Networks.- 1.3 Assumptions and Structural Problems.- 1.4 Complete and GERT Subnetworks.- 2 Temporal Analysis of GERT Networks.- 2.1 Activation Functions and Activation Distributions.- 2.2 Evaluation of Admissible GERT Networks.- 2.3 Computation of Some Quantities Important to Time Planning.- 2.4 Evaluation Methods for Admissible GERT Networks.- 3 STEOR Networks and EOR Networks.- 3.1 Markov Chains and Markov Renewal Processes.- 3.2 STEOR Networks and Markov Renewal Processes.- 3.3 Basic Properties of Admissible EOR Networks.- 3.4 Coverings of Admissible EOR Networks.- 3.5 Properties and Computation of Activation Functions and Activation Numbers.- 3.6 The MRP Method.- 4 Reducible GERT Networks.- 4.1 STEOR—Reducible Subnetworks.- 4.2 Cycle Reduction.- 4.3 Nodes Which Belong Together.- 4.4 Basic Element Structures.- 4.5 BES Networks.- 4.6 Evaluation Methods for BES Networks and General Admissible GERT Networks.- 5 Scheduling with GERT Precedence Constraints.- 5.1 Deterministic Single—Machine Scheduling.- 5.2 Stochastic Single—Machine Scheduling with GERT Precedence Constraints: Basic Concepts.- 5.3 Stochastic Single—Machine Scheduling with GERT Precedence Constraints: Optimality Criteria and Complexity.- 5.4 List Schedules and Sequences of Activity Executions.- 5.5 Minimum Flow—Time Scheduling in FOR Networks.- 5.6 A Flow—Time Scheduling Example.- 5.7 Minimizing the Maximum Expected Lateness in FOR Networks.- 5.8 Essential Histories and Scheduling Policies for Min—Sum Problems in General GERT Networks.- 5.9 Elements of Dynamic Programming.- 5.10 Determination of an Optimal Scheduling Policy for the General Min—Sum Problem.- 6 Cost Minimization for STEOR and FOR Networks.- 6.1 STEORNetworks with Time—Dependent Arc Weights.- 6.2 Cost Minimization in STEOR Networks: Basic Concepts.- 6.3 A Dynamic Programming Approach.- 6.4 The Value—Iteration and Policy—Iteration Techniques.- 7 Cost and Time Minimization for Decision Project Networks.- 7.1 Decision Project Networks.- 7.2 Cost Minimization.- 7.3 Randomized Actions.- 7.4 Multiple Executions of Projects.- 7.5 Time Minimization.- References.