E-Book, Englisch, Band 1670, 289 Seiten, eBook
Reihe: Lecture Notes in Mathematics
neuberger Sobolev Gradients and Differential Equations
2. Auflage 2010
ISBN: 978-3-642-04041-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 1670, 289 Seiten, eBook
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-642-04041-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Several Gradients.- Comparison of Two Gradients.- Continuous Steepest Descent in Hilbert Space: Linear Case.- Continuous Steepest Descent in Hilbert Space: Nonlinear Case.- Orthogonal Projections, Adjoints and Laplacians.- Ordinary Differential Equations and Sobolev Gradients.- Convexity and Gradient Inequalities.- Boundary and Supplementary Conditions.- Continuous Newton#x2019;s Method.- More About Finite Differences.- Sobolev Gradients for Variational Problems.- An Introduction to Sobolev Gradients in Non-Inner Product Spaces.- Singularities and a Simple Ginzburg-Landau Functional.- The Superconductivity Equations of Ginzburg-Landau.- Tricomi Equation: A Case Study.- Minimal Surfaces.- Flow Problems and Non-Inner Product Sobolev Spaces.- An Alternate Approach to Time-dependent PDEs.- Foliations and Supplementary Conditions I.- Foliations and Supplementary Conditions II.- Some Related Iterative Methods for Differential Equations.- An Analytic Iteration Method.- Steepest Descent for Conservation Equations.- Code for an Ordinary Differential Equation.- Geometric Curve Modeling with Sobolev Gradients.- Numerical Differentiation, Sobolev Gradients.- Steepest Descent and Newton#x2019;s Method and Elliptic PDE.- Ginzburg-Landau Separation Problems.- Numerical Preconditioning Methods for Elliptic PDEs.- More Results on Sobolev Gradient Problems.- Notes and Suggestions for Future Work.