Nathanson | Elementary Methods in Number Theory | Buch | 978-0-387-98912-9 | sack.de

Buch, Englisch, Band 195, 514 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 2050 g

Reihe: Graduate Texts in Mathematics

Nathanson

Elementary Methods in Number Theory

Buch, Englisch, Band 195, 514 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 2050 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-0-387-98912-9
Verlag: Springer


Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets.
Nathanson Elementary Methods in Number Theory jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


A First Course in Number Theory.- Divisibility and Primes.- Congruences.- Primitive Roots and Quadratic Reciprocity.- Fourier Analysis on Finite Abelian Groups.- The abc Conjecture.- Divisors and Primes in Multiplicative Number Theory.- Arithmetic Functions.- Divisor Functions.- Prime Numbers.- The Prime Number Theorem.- Primes in Arithmetic Progressions.- Three Problems in Additive Number Theory.- Waring’s Problem.- Sums of Sequences of Polynomials.- Liouville’s Identity.- Sums of an Even Number of Squares.- Partition Asymptotics.- An Inverse Theorem for Partitions.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.