Natarajan / Shavlik / Kersting | Boosted Statistical Relational Learners | Buch | 978-3-319-13643-1 | sack.de

Buch, Englisch, 74 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1416 g

Reihe: SpringerBriefs in Computer Science

Natarajan / Shavlik / Kersting

Boosted Statistical Relational Learners

From Benchmarks to Data-Driven Medicine
2014
ISBN: 978-3-319-13643-1
Verlag: Springer International Publishing

From Benchmarks to Data-Driven Medicine

Buch, Englisch, 74 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1416 g

Reihe: SpringerBriefs in Computer Science

ISBN: 978-3-319-13643-1
Verlag: Springer International Publishing


This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.
The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems.

Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.

Natarajan / Shavlik / Kersting Boosted Statistical Relational Learners jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Statistical Relational Learning.- Boosting (Bi-)Directed Relational Models.- Boosting Undirected Relational Models.- Boosting in the presence of missing data.- Boosting Statistical Relational Learning in Action.- Appendix: Booster System.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.