Buch, Englisch, 750 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 1768 g
Buch, Englisch, 750 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 1768 g
ISBN: 978-1-108-49399-4
Verlag: Cambridge University Press
Quantum Field Theory provides a theoretical framework for understanding fields and the particles associated with them, and is the basis of particle physics and condensed matter research. This graduate level textbook provides a comprehensive introduction to quantum field theory, giving equal emphasis to operator and path integral formalisms. It covers modern research such as helicity spinors, BCFW construction and generalized unitarity cuts; as well as treating advanced topics including BRST quantization, loop equations, and finite temperature field theory. Various quantum fields are described, including scalar and fermionic fields, Abelian vector fields and Quantum ElectroDynamics (QED), and finally non-Abelian vector fields and Quantum ChromoDynamics (QCD). Applications to scattering cross sections in QED and QCD are also described. Each chapter ends with exercises and an important concepts section, allowing students to identify the key aspects of the chapter and test their understanding.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
part I; 11. Feynman rules in X-Space and P-Space; 12. Quantization of the Dirac field and Fermionic path integral; 13. Wick theorem, Gaussian integration and Feynman rules for fermions; 14. Spin sums, Dirac field bilinears and C,P,T symmetries for fermions; 15. Dirac quantization of constrained systems; 16. Quantization of gauge fields, their path integral, and the photon propagator; 17. Generating functional for connected Green's Functions and the effective action (1PI Diagrams); 18. Dyson–Schwinger equations and ward identities; 19. Cross sections and the S-Matrix; 20. The S-matrix and Feynman diagrams; 21. The optical theorem and the cutting rules; 22. Unitarity and the largest time equation; 23. QED.