Buch, Englisch, 596 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1100 g
Buch, Englisch, 596 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1100 g
ISBN: 978-0-7503-0606-5
Verlag: CRC Press
The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view.
Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
Zielgruppe
Postgraduate and Undergraduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Geometrie
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
Weitere Infos & Material
Quantum Physics. Mathematical Preliminaries. Homology Groups. Homotopy Groups. Manifolds. DeRham Cohomology Groups. Riemannian Geometry. Complex Manifolds. Fibre Bundles. Connections on Fibre Bundles. Characteristic Classes. Index Theorems. Anomalies in Gauge Field Theories. Bosonic String Theory. References. Index.