E-Book, Englisch, 604 Seiten, eBook
Nagel / Kröner / Resch High Performance Computing in Science and Engineering '10
1. Auflage 2010
ISBN: 978-3-642-15748-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2010
E-Book, Englisch, 604 Seiten, eBook
ISBN: 978-3-642-15748-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;4
2;Contents;7
3;Physics;12
3.1;Spin-Liquid Phase in the Hubbard Model on the Honeycomb Lattice;15
3.1.1;Overview;15
3.1.2;Introduction;16
3.1.3;Model and Method;17
3.1.4;Results;19
3.1.5;Discussion;24
3.1.6;References;26
3.2;Massive and Massless Four-Loop Integrals;28
3.2.1;Introduction;28
3.2.2;Further Development of ParFORM;29
3.2.3;Massless Four-Loop Integrals;32
3.2.4;Massive Four-Loop Integrals;34
3.2.5;References;35
3.3;Ligand Protected Gold Alloy Clusters as Superatoms;38
3.3.1;Introduction;38
3.3.2;Methods;39
3.3.3;Doped Gold Clusters;39
3.3.4;Nickel-Carbonyl Protected Superatoms;43
3.3.5;Conclusions;48
3.3.6;References;48
3.4;The Chiral Critical Surface of QCD;51
3.4.1;Introduction;51
3.4.2;The Binder Cumulant and Universality;53
3.4.3;Chiral Critical Surface, Nf=3, Nt=4;55
3.4.4;Chiral Critical Surface, Nf=2+1, Nt=4;56
3.4.5;Results for Nf=3 and Nt=6;56
3.4.6;Simulation Details;57
3.4.7;Conclusions;58
3.4.8;References;58
3.5;Mesoscopic Simulations of Polyelectrolyte Electrophoresis in Nanochannels;60
3.5.1;Introduction;60
3.5.2;Dissipative Particle Dynamics;61
3.5.3;The Software Package ESPResSo;62
3.5.4;Polyelectrolyte Electrophoresis in Microchannels;63
3.5.4.1;General Theory;63
3.5.4.2;Simulation Details;65
3.5.4.3;Results;66
3.5.5;Summary;72
3.5.6;References;74
3.6;The SuperN-Project: An Update on Core-Collapse Supernova Simulations;75
3.6.1;Introduction;75
3.6.2;Numerical Models;76
3.6.2.1;History and Constraints;76
3.6.2.2;The Mathematical Model;78
3.6.2.3;``Ray-by-Ray Plus'' Method for the Neutrino Transport Problem;78
3.6.2.4;Parallelization;82
3.6.3;Recent Results and Ongoing Work;84
3.6.3.1;Relativistic Supernova Models;84
3.6.3.2;Simulations of Neutron Star Cooling;85
3.6.4;Conclusions and Outlook;87
3.6.5;References;88
3.7;Higgs Boson Mass Bounds from a Chirally Invariant Lattice Higgs-Yukawa Model;90
3.7.1;Introduction;90
3.7.2;The SU(2)LSU(2)R Invariant Higgs-Yukawa Model;91
3.7.3;Implementation, Performance, and Parallelization;94
3.7.4;Results;98
3.7.4.1;The Higgs Boson Mass Bounds;99
3.7.4.2;Preliminary Data on the Effects of a Heavy Fourth Generation;101
3.7.4.3;Resonance Parameters of the Higgs Boson;102
3.7.5;Summary and Outlook;104
3.7.6;References;105
3.8;Dust, Chemistry & Radiation Transport in MRI-Turbulent Protoplanetary Discs;108
3.8.1;Introduction;108
3.8.2;Numerical Code;110
3.8.3;Model Description;111
3.8.4;Simulation Results;112
3.8.4.1;Flow Structure;112
3.8.4.2;Time History ;113
3.8.4.3;Vertical Structure;115
3.8.4.4;Turbulent Saturation Level;117
3.8.5;Ressources Used;118
3.8.6;Conclusion & Outlook;119
3.8.7;References;120
4;Solid State Physics;122
4.1;Organic-Metal Interface: Adsorption of Cysteine on Au(110) from First Principles;124
4.1.1;Introduction;124
4.1.2;Computational Methods;125
4.1.3;Results and Discussion;126
4.1.3.1;The Thiolate-Gold Bond;126
4.1.3.2;The Amino-Gold Bond;133
4.1.4;Summary and Outlook;137
4.1.5;References;138
4.2;Ab-initio Characterization of Electronic Properties of PbTe Quantum Dots Embedded in a CdTe Matrix;140
4.2.1;Introduction;140
4.2.2;Computational Method;142
4.2.2.1;Theoretical Background;142
4.2.2.2;Computational Cost;143
4.2.3;Nanocrystal Construction Using Supercells;144
4.2.4;Results and Discussion;145
4.2.4.1;Induced Electrostatic Fields;145
4.2.4.2;Electronic Properties;145
4.2.4.3;Spatial Localization of Electrons and Holes: Quantum Confined Stark Effect (QCSE);149
4.2.5;Summary and Outlook;150
4.2.6;References;151
4.3;Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations;153
4.3.1;Introduction;153
4.3.2;Computational Method;155
4.3.3;Results;157
4.3.4;Summary;160
4.3.5;References;160
4.4;Laser Ablation of Metals;163
4.4.1;Introduction;163
4.4.1.1;Physical Challenge;163
4.4.2;Report;164
4.4.2.1;Interaction Parameters for Aluminium;164
4.4.2.2;Heat Propagation and Two-Temperature Model;165
4.4.2.3;Simulation of Laser Ablation in Aluminium;167
4.4.2.4;Active Boundary Conditions;168
4.4.2.5;Cluster Analysis of the Gas Phase;168
4.4.2.6;Anisotropic Materials;169
4.4.3;Performance;170
4.4.3.1;General Considerations;170
4.4.3.2;Benchmarks;170
4.4.4;Summary;172
4.4.5;References;172
4.5;Conductance and Noise Correlations of Correlated Nanostructures;173
4.5.1;Shot Noise in the Interacting Resonant Level Model;173
4.5.2;Transport in the Presence of Degenerate Levels;176
4.5.2.1;Kubo Approach for Degenerate Ground-States;177
4.5.2.2;Results;178
4.5.3;References;182
4.6;Cu Substitutionals and Defect Complexes in the Lead-Free Ferroelectric KNN;184
4.6.1;Introduction;184
4.6.2;Physical Approach;185
4.6.3;Computational Method;186
4.6.3.1;Details of the DFT Calculations;186
4.6.3.2;HPC Resources Used for the Present Study;187
4.6.4;Results;188
4.6.4.1;Energetically Preferred Lattice Sites for Cu Dopants;188
4.6.4.2;Stability of Defect Complexes of Cu Substitutionals and O Vacancies;189
4.6.5;Discussion;189
4.6.6;Summary and Outlook;190
4.6.7;References;190
5;Reacting Flows;192
5.1;Scalar Mixing in Droplet Arrays in Stagnant and Convective Environments;194
5.1.1;Introduction;194
5.1.2;Methodology;195
5.1.2.1;Code Parallelisation;198
5.1.3;Test Cases;199
5.1.4;Scalar Mixing in Droplet Arrays;201
5.1.5;Computational Resources;204
5.1.6;Conclusions;205
5.1.7;References;205
5.2;Euler-Lagrange Simulation of a LOX/H2 Model Combustor with Single Shear Coaxial Injector;206
5.2.1;Introduction;206
5.2.2;Governing Equations and Numerical Schemes;207
5.2.2.1;Gas Phase;207
5.2.2.2;Liquid Droplet Spray;208
5.2.2.3;Coupling;210
5.2.3;Boundary Conditions and Computational Procedure;210
5.2.4;Results and Discussion;213
5.2.5;Performance;215
5.2.6;References;216
5.3;Simulation of Triflux Heat Exchangers in Utility Boilers;219
5.3.1;Introduction;219
5.3.2;Models;220
5.3.2.1;The 3D-CFD-Code AIOLOS;220
5.3.2.2;The 1D Representation of Tubes;222
5.3.2.3;Interaction Between 3D CFD-Cells and 1D Tube Segments;223
5.3.2.4;Triflux Heatexchangers;223
5.3.2.5;Water and Steam Properties;224
5.3.3;Results;224
5.3.3.1;Triflux Heat Exchanger;226
5.3.3.2;Performance;228
5.3.4;Conclusions;228
5.3.5;References;229
6;Computational Fluid Dynamics;231
6.1;Direct Numerical Simulation of Swept-Wing Laminar Flow Control Using Pinpoint Suction;233
6.1.1;Introduction;233
6.1.2;Numerics;234
6.1.2.1;Incompressible Code N3D;234
6.1.2.2;Compressible Code NS3D;235
6.1.3;Results;236
6.1.3.1;Incompressible Test Case;237
6.1.3.2;Compressible Test Case;237
6.1.3.3;Comparison;239
6.1.3.4;Pinpoint Suction Results;242
6.1.3.5;Computational Aspects;247
6.1.4;References;250
6.2;A Numerical Study of Turbulent Stably-Stratified Plane Couette Flow;253
6.2.1;Introduction;253
6.2.2;Computational Setup;254
6.2.3;Computational Details;255
6.2.4;Results;256
6.2.5;Conclusions;260
6.2.6;References;261
6.3;DNS of Unsteady Heat Transfer Increase on a Curved Surface Due to Wake-Induced Turbulence;264
6.3.1;Introduction;264
6.3.2;Setup;265
6.3.2.1;Computational Grid;266
6.3.2.2;Reference Correlation;267
6.3.3;Flow Solver and Code Performance;268
6.3.4;Preliminary Results;269
6.3.4.1;Mean Heat Transfer;269
6.3.4.2;Instantaneous Temperature and Flow Field;270
6.3.5;Conclusions;271
6.3.6;References;272
6.4;Application of a Novel Turbulence Generator to Multiphase Flow Computations;273
6.4.1;Introduction;273
6.4.2;Numerical Method;274
6.4.2.1;Turbulent Inflow Generation;275
6.4.3;Applications;277
6.4.3.1;Turbulent Free Air Stream;277
6.4.3.2;Disintegration of Turbulent Liquid Jets;279
6.4.3.3;Drop Evaporation in a Turbulent Free Stream;282
6.4.4;Architecture and Performance;283
6.4.5;Conclusion;285
6.4.6;References;285
6.5;Numerical Investigation on the Deformation of Droplets in High-Pressure Homogenizers;287
6.5.1;Introduction;287
6.5.2;Characteristics of the Homogenizer;288
6.5.3;Governing Equations;288
6.5.4;Computational Domain, Grid and Boundary Conditions;290
6.5.5;Flow Field;290
6.5.6;Computational Effort;293
6.5.7;Summary;293
6.5.8;References;294
6.6;Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow;295
6.6.1;Introduction;295
6.6.2;Numerical Method;296
6.6.3;Setup of the Simulation;298
6.6.4;Computational Costs and Efficiency;300
6.6.5;Results and Discussion;300
6.6.6;Conclusions;304
6.6.7;References;305
6.7;Grid Sensitivity of LES Heat Transfer Results of a Turbulent Round Impinging Jet;307
6.7.1;Introduction;307
6.7.2;Numerical Procedure and Setup;310
6.7.3;Computational Details;310
6.7.3.1;Numerical Grid Resolution;310
6.7.3.2;Inflow Conditions;312
6.7.3.3;Outflow Conditions;312
6.7.4;Numerical Code & Its Performance;313
6.7.4.1;FASTEST;313
6.7.4.2;Code Performance & Solution Control;313
6.7.5;Results;314
6.7.5.1;Instabilities in an Axisymmetric Jet;314
6.7.5.2;Mean Flow Properties and Turbulent Flow Intensities;315
6.7.5.3;Heat Transfer and Coherent Structures;318
6.7.6;Conclusions;321
6.7.7;References;322
6.8;Large Eddy Simulations of a Jet in Crossflow;326
6.8.1;Introduction;326
6.8.2;Boundary Conditions;327
6.8.3;Simulation Aspects;328
6.8.4;Results;332
6.8.5;Conclusion;335
6.8.6;References;335
6.9;The Impact of Secondary Mean Vortices on Turbulent Separation in 3D Diffusers;337
6.9.1;Introduction;337
6.9.2;Computational Setup;339
6.9.2.1;Computational Domain and Boundary Conditions;339
6.9.2.2;Computational Grid and Averaging;341
6.9.2.3;Numerical Method and Turbulence Model;341
6.9.2.4;Methodology and Simulation Overview;341
6.9.3;Results;344
6.9.4;Conclusions;349
6.9.5;References;349
6.10;Time-Dependent Three-Dimensional Simulation of the Turbulent Flow and Heat Transfer in Czochralski Crystal Growth Including the Three-Phase Boundary Movement;351
6.10.1;Introduction;351
6.10.2;Mathematical Formulation;354
6.10.3;Numerical Method;356
6.10.3.1;General Solver Features;356
6.10.3.2;High-Performance Computing Approach;356
6.10.3.3;Problem-Specific Extensions;357
6.10.4;Problem Details;358
6.10.5;Results and Discussion;360
6.10.6;Conclusions;364
6.10.7;References;364
6.11;Numerical Investigation of Shock Wave Boundary-Layer Interaction Using a Zonal RANS-LES Ansatz;366
6.11.1;Introduction;366
6.11.2;Mathematical Formulation;367
6.11.2.1;Numerical Methods;367
6.11.2.2;Synthetic Turbulence Generation Methods (STGM);368
6.11.2.3;Reconstruction of Eddy Viscosity for Transition from LES to RANS;368
6.11.3;Results and Discussion;369
6.11.3.1;Validation of STGM;369
6.11.3.2;DRA2303 Transonic Profile;371
6.11.4;Computational Resources;377
6.11.5;Conclusion;378
6.11.6;References;379
6.12;Large Eddy Simulation of the Cyclic Variations in an Internal Combustion Engine;381
6.12.1;Introduction;381
6.12.2;Numerical Setup;382
6.12.3;Combustion Model;383
6.12.4;Mixing Model;385
6.12.5;Results;385
6.12.6;Computational Efficiency;387
6.12.7;Conclusions;387
6.12.8;References;388
6.13;CFD-CSD-Coupled Simulations of Helicopter Rotors Using an Unstructured Flow Solver;389
6.13.1;Introduction;389
6.13.2;Mathematical Formulation and Numerical Scheme;390
6.13.2.1;Flow and Structural Modeling;390
6.13.2.2;Weak Coupling Methodology and Trim Procedure;391
6.13.3;Results;392
6.13.3.1;Experiment and Test Case Setup;392
6.13.3.2;Trim Convergence;393
6.13.3.3;Blade Dynamics and Rotor aerodynamics;394
6.13.3.4;Computational Performance;397
6.13.4;Conclusions and Outlook;400
6.13.5;References;401
6.14;Wake Signature of Finite-Span Flapping Rigid Wings;403
6.14.1;Introduction;403
6.14.2;Solution Method;405
6.14.3;Computational Domain and Grid Dependence Study;408
6.14.4;Simulation Results;412
6.14.5;Conclusions and Future Perspectives;419
6.14.6;References;422
6.15;Computational Design Study of a 3D Hypersonic Intake for Scramjet Demonstrator Testing;424
6.15.1;Introduction;424
6.15.2;Physical Model;427
6.15.2.1;Conservation Equations;427
6.15.3;Numerical Method;428
6.15.3.1;Spatial Discretization;428
6.15.3.2;Time-Stepping Scheme;428
6.15.3.3;Reynolds Stress Model;429
6.15.3.4;Boundary Conditions;429
6.15.3.5;Numerical Accuracy;430
6.15.4;Results;431
6.15.5;Computational Considerations;434
6.15.6;Conclusions;434
6.15.7;References;435
6.16;Characterization of Mixing in Food Extrusion and Emulsification Processes by Using CFD;437
6.16.1;Introduction;437
6.16.2;Evaluation of Dispersive Mixing in the Fully Filled Zone of a Twin-Screw Extruder;438
6.16.2.1;Motivation;438
6.16.2.2;Fundamentals;439
6.16.2.3;Material and Methods;442
6.16.2.4;Results and Discussion;445
6.16.2.5;Conclusions;449
6.16.3;Evaluation of Local Mixing in SEM (Simultaneous Emulsification and Mixing) Nozzles for Melt Emulsification Purposes;449
6.16.3.1;Motivation;449
6.16.3.2;Materials and Methods;450
6.16.3.3;Results;451
6.16.3.4;Conclusion;453
6.16.4;References;454
7;Transport and Climate;457
7.1;Modelling Regional Climate Change in Germany;460
7.1.1;Introduction;460
7.1.2;The CCLM Model;461
7.1.3;Regional Climate Simulations Using the HLRS Facilities;461
7.1.3.1;Simulation Setup and Downscaling Chain;461
7.1.3.2;HPC Aspects;463
7.1.4;Results;464
7.1.4.1;Change of Number of Summer and Frost Daysin Baden-Württemberg;464
7.1.4.2;Future Changes of Strong Summer Precipitation Events;464
7.1.4.3;Validation Results for the CEDIM-Project Simulations;467
7.1.5;Future Work;469
7.1.6;References;469
7.2;Modelling the Extratropical Transition of Tropical Cyclones and Its Downstream Impact;472
7.2.1;Introduction;472
7.2.2;The COSMO Model;473
7.2.3;The Downstream Impact of Tropical Cyclones Undergoing Extratropical Transition;474
7.2.3.1;Operational COSMO-T-PARC Forecasts;474
7.2.3.2;Performance Tests and System Data;476
7.2.3.3;The Outflow-Jet Interaction During the Extratropical Transition of Typhoon Jangmi;477
7.2.4;Details of the Outflow-Jet Interaction of Typhoon Jangmi;481
7.2.4.1;PV Perspective;481
7.2.4.2;Quantification of the Impact of Jangmi on the Midlatitude Jet Using PV Surgery;484
7.2.5;Details of the COSMO Runs Used in the Case Study of Typhoon Jangmi;488
7.2.6;Summary and Outlook;490
7.2.7;References;490
7.3;Global Long-Term MIPAS Data Processing: Some Aspects of the Dynamics of the Atmosphere from Lower Stratosphere to Lower Thermosphere;493
7.3.1;The MIPAS/Envisat Mission;494
7.3.2;Data Analysis;494
7.3.3;Computational Considerations;495
7.3.3.1;Processing System Overview;495
7.3.3.2;Throughput;496
7.3.3.3;Processor Usage;496
7.3.4;Examples of Scientific Work with MIPAS Data;497
7.3.4.1;Carbon Monoxide Distributions from the Upper Troposphere to the Mesosphere;497
7.3.4.2;Temperature Distributions from the Stratosphere to the Lower Thermosphere During a Major Warming Event;502
7.3.5;Conclusions and Outlook;503
7.3.6;References;504
8;Miscellaneous Topics;506
8.1;Computer Simulation for Building Implosion Using LS-DYNA;509
8.1.1;Introduction;509
8.1.2;Aspects of Numerical Simulation;509
8.1.3;Simulation Models;510
8.1.3.1;Previous Models;510
8.1.3.2;Sparkasse Building in Hagen;510
8.1.3.3;Storehouse in Thueringen;514
8.1.4;References;517
8.2;Quaero Speech-to-Text and Text Translation Evaluation Systems;519
8.2.1;Introduction;519
8.2.2;Quaero;519
8.2.3;English Evaluation Recognition Systems;520
8.2.3.1;Front-End;521
8.2.3.2;Acoustic Model Training;521
8.2.4;Translation System;524
8.2.4.1;Data;524
8.2.4.2;Preprocessing;525
8.2.4.3;Language Model;525
8.2.4.4;Translation Model;526
8.2.4.5;Reordering Model;527
8.2.4.6;Decoder;528
8.2.4.7;Re-Ranking;528
8.2.5;Parallelization Utilized;529
8.2.5.1;Automatic Speech Recognition;529
8.2.5.2;Machine Translation;530
8.2.6;References;530
8.3;Molecular Modeling of Hydrogen Bonding Fluids: Transport Properties and Vapor-Liquid Coexistence;533
8.3.1;Introduction;533
8.3.2;Transport Properties of Ammonia;534
8.3.3;Vapor-Liquid Equilibria of Carbon Dioxide + Cyclohexane + Cyclohexanol and Its Subsystems;536
8.3.3.1;Carbon Dioxide + Cyclohexane ;537
8.3.3.2;Carbon Dioxide + Cyclohexanol ;537
8.3.3.3;Cyclohexane + Cyclohexanol ;539
8.3.3.4;Carbon Dioxide + Cyclohexane + Cyclohexanol ;539
8.3.4;Conclusion;540
8.3.5;References;541
8.4;Software Framework UG: Parallel Simulation of a Three-Dimensional Benchmark Problem for Thermohaline-Driven Flow;542
8.4.1;Introduction;542
8.4.2;Mathematical Model;543
8.4.3;Numerical Solution;543
8.4.4;Benchmark Description;544
8.4.5;Results and Discussion;545
8.4.6;References;549
8.5;Tailored Usage of the NEC SX-8 and SX-9 Systems in Satellite Geodesy;550
8.5.1;Introduction;550
8.5.2;Methodology;551
8.5.3;Tailored Implementation on NEC SX Systems;553
8.5.3.1;Data Input;553
8.5.3.2;Design Matrix Assembly;554
8.5.3.3;Setup of the Normal Equations System;555
8.5.3.4;Solution of the Normal Equations System;555
8.5.4;Results;556
8.5.4.1;Design Matrix Assembly;556
8.5.4.2;Parallelization Performance;556
8.5.5;Discussion and Conclusion;560
8.5.6;References;561
8.6;A Geodynamic Model of the Evolution of the Earth's Chemical Mantle Reservoirs;562
8.6.1;Introduction: Geochemical Mantle Reservoirs;562
8.6.2;Model;564
8.6.3;Solution of Numerical Problems Regarding the Tracers Representing the Incompatible Elements in the Earth's Mantle and Results;566
8.6.3.1;General Remarks;566
8.6.3.2;Thermal and Chemical Evolution Using a Pair of Reference Runs;566
8.6.3.3;Continents and Mantle Inhomogeneities;570
8.6.4;Numerical Method, Implementation, Scalability, and Performance;574
8.6.5;References;579
8.7;Three-Dimensional Simulation of Rarefied Plasma Flows Using a High Order Particle in Cell Method;582
8.7.1;Introduction;582
8.7.2;Maxwell Solver;583
8.7.2.1;The Discontinuous Galerkin Scheme;583
8.7.3;Particle-Grid Coupling;584
8.7.3.1;Deposition of Charges and Currents;584
8.7.3.2;Evaluation of Electromagnetic Fields at Particle Positions;585
8.7.4;Particle Pusher;586
8.7.4.1;Performance Analysis;586
8.7.5;Parallelization;587
8.7.6;Simulation Examples;589
8.7.6.1;Gyrotron Launcher;589
8.7.6.2;Plasma Wave 3D;590
8.7.6.3;Weibel Instability 3D;591
8.7.7;Summary and Outlook;592
8.7.8;References;592