E-Book, Englisch, 676 Seiten
Nagel / Kröner / Resch High Performance Computing in Science and Engineering ' 07
1. Auflage 2007
ISBN: 978-3-540-74739-0
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2007
E-Book, Englisch, 676 Seiten
ISBN: 978-3-540-74739-0
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Stuttgart High Performance Computing Center in 2007. The reports cover all fields of computational science and engineering, with emphasis on industrially relevant applications. Presenting results for both vector-based and microprocessor-based systems, the book allows comparison between performance levels and usability of various architectures.
Autoren/Hrsg.
Weitere Infos & Material
1;Physics;13
1.1;The SuperN-Project: Current Progress in Modelling Core Collapse Supernovae;15
1.1.1;1 Introduction;15
1.1.2;2 Numerical Models;16
1.1.3;3 The Mathematical Model;19
1.1.4;4 Recent Results and Ongoing Work;24
1.1.5;5 Conclusions and Outlook;27
1.1.6;References;28
1.2;Toward Conquering the Parameter Space of Gravitational Wave Signals from Black Hole Coalescence;30
1.2.1;1 Introduction;30
1.2.2;2 Status of the Field;32
1.2.3;3 Description of the Method;35
1.2.4;4 Status Report of Optimization Work;37
1.2.5;5 Conclusions and Plans for Future Work;40
1.2.6;References;41
1.3;Massless Four-Loop Integrals and the Total Cross Section in e+ e- Annihilation;44
1.3.1;1 Aim of the Project;44
1.3.2;2 Parallel Computer Algebra;47
1.3.3;3 Massless Four-Loop Integrals: s( e+ e- . hadrons);49
1.3.4;4 Massive Vacuum Integrals: .(q2) to Four Loops;51
1.3.5;References;52
2;Solid State Physics;76
2.1;Simulations of Strongly Correlated Quantum Systems out of Equilibrium;79
2.1.1;1 Introduction;79
2.1.2;2 Adaptive Time-Dependent DMRG Method;80
2.1.3;3 Spinless Fermions Following a Quantum Quench;82
2.1.4;4 Atom Laser;85
2.1.5;5 Summary;87
2.1.6;References;88
2.2;Computer Simulations of Soft Matter-and Nano- Systems;90
2.2.1;1 Two-Dimensional Colloidal Systems in Periodic External Fields;90
2.2.2;2 Transport of Colloids in Micro-Channels;94
2.2.3;3 Proteins in Lipid Bilayers;97
2.2.4;4 Theoretical Analysis of the Conductance and Structural Properties of Ni Nanocontacts;99
2.2.5;5 Nano Shape Memory Alloys;99
2.2.6;6 DFT-Investigations of Sin Clusters in External Fields;101
2.2.7;7 Model Magnetic Systems;102
2.2.8;References;103
3;Chemistry;143
3.1;Shared Memory Parallelization of the Multi- configuration Time- dependent Hartree Method and Application to the Dynamics and Spectroscopy of the Protonated Water- dimer;146
3.1.1;1 Introduction;146
3.1.2;2 MCTDH: Equations of Motion and Implementation;147
3.1.3;3 Shared Memory Parallelization of MCTDH;150
3.1.4;4 Dynamics and Infrared Spectrum of the Zundel Cation;153
3.1.5;5 Conclusions;159
3.1.6;References;160
3.2;Green Chemistry from Supercomputers: Car– Parrinello Simulations of Emim- chloroaluminate Ionic Liquids;161
3.2.1;1 Introduction;161
3.2.2;2 Method;162
3.2.3;3 Results: Electronic Structure;169
3.2.4;4 Computational Performance;170
3.2.5;5 Conclusions;173
3.2.6;References;173
3.3;DFT Modelling of Oxygen Adsorption on CoCr Surfaces;176
3.3.1;1 Introduction;176
3.3.2;2 Computational Technique;177
3.3.3;3 Results;179
3.3.4;4 Conclusions and Outlook;187
3.3.5;References;188
3.4;Comparison of the Incorporation of Watson- Crick Complementary and Mismatched Nucleotides Catalyzed by DNA Polymerase I;190
3.4.1;1 Introduction;190
3.4.2;2 Material and Method;192
3.4.3;3 Results and Discussion;193
3.4.4;4 Conclusion;199
3.4.5;References;200
4;Reacting Flows;203
4.1;Assumed PDF Modeling of Turbulence Chemistry Interaction in Scramjet Combustors;205
4.1.1;1 Introduction;205
4.1.2;2 Governing Equations and Numerical Scheme;206
4.1.3;3 Lobed Strut Injector-Mixing Enhancement;208
4.1.4;4 Supersonic Combustion Experiment;211
4.1.5;5 Performance;213
4.1.6;6 Conclusion;214
4.1.7;References;214
4.2;Simulations of Premixed Swirling Flames Using a Hybrid Finite- Volume/ Transported PDF Approach;216
4.2.1;1 Introduction;216
4.2.2;2 Numerical Model;218
4.2.3;CFD PDF;218
4.2.4;3 Results and Discussion;222
4.2.5;4 Conclusion;226
4.2.6;References;226
4.3;Computations of Premixed Turbulent Flames;229
4.3.1;1 Motivation;229
4.3.2;2 Numerical Method;232
4.3.3;3 Issues of HPC;233
4.3.4;4 Sample Results;234
4.3.5;5 Conclusions;238
4.3.6;References;238
4.4;Ignition of Droplets in a Laminar Convective Environment;240
4.4.1;1 Introduction;240
4.4.2;2 Numerical model;241
4.4.3;3 Results and Discussion;244
4.4.4;4 Conclusions;248
4.4.5;References;249
5;Computational Fluid Dynamics;253
5.1;Laminar-Turbulent Transition in a Laminar Separation Bubble: Influence of Disturbance Amplitude on Bubble Size and Bursting;258
5.1.1;1 Introduction;258
5.1.2;2 Physical Model and Numerical Method;259
5.1.3;3 Reference Configuration: Short Separation Bubble;262
5.1.4;4 Influence of Disturbance Amplitude on Bubble Size;267
5.1.5;5 Computational Aspects;268
5.1.6;6 Summary and Conclusions;269
5.1.7;References;271
5.2;Direct Numerical Simulation on the Influence of the Nozzle Design for Water Sheets Emerged at Moderate Reynolds Numbers;273
5.2.1;1 Introduction;273
5.2.2;2 Numerical Method;274
5.2.3;3 Numerical Setup;275
5.2.4;4 Results;278
5.2.5;5 Computational Performance and Resources;283
5.2.6;6 Concluding Remarks;286
5.2.7;References;286
5.3;DNS of Heat Transfer from a Flat Plate affected by Free- Stream Fluctuations;288
5.3.1;1 Introduction;288
5.3.2;2 Computational Details;289
5.3.3;3 Performance of the Code on the XC1;291
5.3.4;4 Results;292
5.3.5;5 Conclusions;296
5.3.6;References;297
5.4;Direct Numerical Simulation of Turbulent Flow Over Dimples – Code Optimization for NEC SX- 8 plus Flow Results;298
5.4.1;1 Introduction;298
5.4.2;2 Architecture of the NEC SX-8;300
5.4.3;3 Finite–Volume Code LESOCC;301
5.4.4;4 Performance of LESOCC;302
5.4.5;5 Flow Predictions;305
5.4.6;6 Conclusions;311
5.4.7;References;312
5.5;Direct Numerical Simulation of a Serrated Nozzle End for Jet- Noise Reduction;314
5.5.1;1 Introduction;314
5.5.2;2 Numerical Method;315
5.5.3;3 Numerical Results;325
5.5.4;4 Computational Aspects;330
5.5.5;5 Conclusion;331
5.5.6;References;332
5.6;Direct Numerical Simulation of a Round Jet into a Crossflow – Analysis and Required Resources;333
5.6.1;1 Introduction;333
5.6.2;2 Flow Configuration;334
5.6.3;3 Numerical Method;334
5.6.4;4 Local Grid Refinement for Optimum Distribution of Grid Nodes;335
5.6.5;5 Parallel Efficiency of the Computations;336
5.6.6;6 Other Numerical Statistics from the Computations;337
5.6.7;7 Flow Structures at Reynolds Number 650;338
5.6.8;8 The Influence of the Reynolds Number;340
5.6.9;9 Location of the Transition;341
5.6.10;10 Conclusions;342
5.6.11;References;343
5.7;Transport of Heavy Spherical Particles in Horizontal Channel Flow;345
5.7.1;1 Introduction;345
5.7.2;2 Numerical Method;347
5.7.3;3 Results;350
5.7.4;4 Performance of the Code;359
5.7.5;5 Conclusion;360
5.7.6;References;361
5.8;Analysis of Turbulent Structures in a Czochralski System Using DNS and LES Predictions;364
5.8.1;1 Introduction;364
5.8.2;2 Problem Details;365
5.8.3;3 Numerical Method;367
5.8.4;4 Results and Discussion;370
5.8.5;5 Summary and Conclusions;374
5.8.6;References;378
5.9;Aeroacoustic Prediction of Jet and Slat Noise;380
5.9.1;1 Introduction;380
5.9.2;2 Numerical Methods;381
5.9.3;3 Computational Setup;383
5.9.4;4 Results and Discussion;386
5.9.5;5 Conclusion;399
5.9.6;References;400
5.10;Investigation of the Turbulent Flow Separation from an Axisymmetric Hill;402
5.10.1;1 Introduction;402
5.10.2;2 Numerical Model;404
5.10.3;3 Computational Details;406
5.10.4;4 Results;406
5.10.5;5 Conclusions;409
5.10.6;References;409
5.11;Large Eddy Simulation (LES) with Moving Meshes on a Rapid Compression Machine: Part 2: Numerical Investigations Using Euler- Lagrange- Technique;411
5.11.1;1 Introduction;412
5.11.2;2 Results of the Four-Hole Configuration;415
5.11.3;3 Two-Hole Configuration;420
5.11.4;4 Computational Efficiency;421
5.11.5;5 Conclusion;421
5.11.6;References;422
5.12;Numerical Characterization of the Non- Reacting Flow in a Swirled Gasturbine Model Combustor;423
5.12.1;1 Introduction;423
5.12.2;2 Physical Model;424
5.12.3;3 Numerical Method;427
5.12.4;4 Results and Discussion;428
5.12.5;5 Computational Resources;434
5.12.6;6 Conclusions;435
5.12.7;References;436
5.13;On Implementing the Hybrid Particle- Level- Set Method on Supercomputers for Two- Phase Flow Simulations;437
5.13.1;1 Introduction;437
5.13.2;2 An Optimized HPLS-Method;438
5.13.3;3 Simulations of Rising Gas Bubbles in Liquids;443
5.13.4;4 Summary;446
5.13.5;References;447
5.14;Lattice Boltzmann Simulations of Microemulsions and Binary Immiscible Fluids Under Shear;449
5.14.1;1 Introduction;449
5.14.2;2 Simulation Method and Implementation;450
5.14.3;3 Results;454
5.14.4;4 Conclusion;460
5.14.5;References;460
5.15;Numerical Investigation of Hypersonic Intake Flows;463
5.15.1;1 Introduction;463
5.15.2;2 Physical Model;465
5.15.3;3 Numerical Methods;467
5.15.4;4 Results;468
5.15.5;5 Performance of the NEC SX8 in Comparison with Parallel Computer Systems;476
5.15.6;6 Conclusions;477
5.15.7;References;477
5.16;Trimmed Simulation of a Complete Helicopter Configuration Using Fluid- Structure Coupling;479
5.16.1;1 Introduction;479
5.16.2;2 Mathematical Formulation and Numerical Scheme;480
5.16.3;3 Results;484
5.16.4;4 Computational Performance;491
5.16.5;5 Conclusions and Outlook;491
5.16.6;References;492
5.17;FEAST: Development of HPC Technologies for FEM Applications;494
5.17.1;1 High Performance Linear Algebra;494
5.17.2;2 Scalable Recursive Clustering;498
5.17.3;3 FEAST;502
5.17.4;4 Discussion;506
5.17.5;References;507
6;Transport and Climate;508
6.1;Global Long-Term MIPAS Processing;510
6.1.1;1 Introduction;511
6.1.2;2 The MIPAS/Envisat Mission;511
6.1.3;3 Data Analysis;512
6.1.4;4 Examples of Scientific Projects;512
6.1.5;5 Computational Considerations;515
6.1.6;6 Conclusions and Outlook;523
6.1.7;References;523
6.2;Modelling the Regional Climate of Southwest Germany: Sensitivity to Simulation Setup;524
6.2.1;1 Introduction;524
6.2.2;2 Model History and Description;525
6.2.3;3 Simulation Setup and the Downscaling Chain;527
6.2.4;4 Results;528
6.2.5;5 Performance of the Model on the SX-8;536
6.2.6;6 Conclusion and Outlook;536
6.2.7;7 Data Sets;537
6.2.8;References;537
6.3;OpenMP Parallelization of the METRAS Meteorology Model: Application to the America’s Cup;538
6.3.1;1 Introduction;538
6.3.2;2 Meteorology Model;539
6.3.3;3 Parallelization;541
6.3.4;4 Scenario for the America’s Cup;545
6.3.5;5 Conclusions;549
6.3.6;References;549
7;Structural Mechanics;551
7.1;Adaptive Analysis of Bifurcation Points of Shell Structures;552
7.1.1;1 Introduction;552
7.1.2;2 Static Stability Criteria;552
7.1.3;3 Computation of Stability Points for a Geometrically Perfect Cylinder Under Axial Compression;553
7.1.4;4 Computational Aspects;557
7.1.5;References;558
8;Miscellaneous Topics;559
8.1;Molecular Modeling of Hydrogen Bonding Fluids: Formic Acid and Ethanol + R227ea;561
8.1.1;1 Introduction;561
8.1.2;2 Molecular Model for Formic Acid;562
8.1.3;3 Molecular Model for R227ea;566
8.1.4;4 Vapor-Liquid Coexistence Curve of Ethanol + R227ea;570
8.1.5;5 Computing Performance;571
8.1.6;References;572
8.2;Modeling Elastic and Poroelastic Wave Propagation in Complex Geological Structures;574
8.2.1;1 Analytical and Numerical Analysis of Scattering Attenuation in Random Media;574
8.2.2;2 Simulation of Waves in Poroelastic Structures;579
8.2.3;References;587
8.3;Whole-Mantle Convection, Continent Generation, and Preservation of Geochemical Heterogeneity;589
8.3.1;1 Introduction: Whole-Mantle Convection and Geochemistry;590
8.3.2;2 Observational Constraints;592
8.3.3;3 Model;598
8.3.4;4 Results and Discussion of the Figures;612
8.3.5;5 Conclusions;623
8.3.6;References;624
8.4;Numerical Simulation of Human Radiation Heat Transfer Using a Mathematical Model of Human Physiology and Computational Fluid Dynamics ( CFD);632
8.4.1;1 Objectives and Methodology;633
8.4.2;2 Modeling Geometry and Meshing;633
8.4.3;3 Modelling Radiation;635
8.4.4;4 Modelling Human Radiative Heat Transfer;643
8.4.5;5 Summary, Conclusions and Future Work;648
8.4.6;References;650
8.5;Parallel Finite Element Methods with Weighted Linear B- Splines*;652
8.5.1;1 Introduction;652
8.5.2;2 Finite Element Basis;653
8.5.3;3 Preprocessing of Ritz-Galerkin Integrals;655
8.5.4;4 Program Description;657
8.5.5;5 Implementation and Performance;658
8.5.6;6 Concluding Remarks;660
8.5.7;References;660




