Buch, Englisch, 94 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 136 g
Buch, Englisch, 94 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 136 g
ISBN: 978-1-032-07367-5
Verlag: CRC Press
- Parametric models with coverage of
- Concept of maximum likelihood estimate (MLE) of a probability distribution parameter
- MLE of the survival function
- Common probability distributions and their analysis
- Analysis of exponential distribution as a survival function
- Analysis of Weibull distribution as a survival function
- Derivation of Gumbel distribution as a survival function from Weibull
- Non-parametric models including
- Kaplan–Meier (KM) estimator, a derivation of expression using MLE
- Fitting KM estimator with an example dataset, Python code and plotting curves
- Greenwood’s formula and its derivation
- Models with covariates explaining
- The concept of time shift and the accelerated failure time (AFT) model
- Weibull-AFT model and derivation of parameters by MLE
- Proportional Hazard (PH) model
- Cox-PH model and Breslow’s method
- Significance of covariates
- Selection of covariates
The Python lifelines library is used for coding examples. By mapping theory to practical examples featuring datasets, this book is a hands-on tutorial as well as a handy reference.
Zielgruppe
Academic and Professional
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik Mathematik Stochastik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
Chapter 1. Introduction Chapter 2. General Theory of Survival Analysis Chapter 3. Parametric Models Chapter 4. Nonparametric Models Chapter 5. Models with Covariates