Buch, Englisch, 538 Seiten, Format (B × H): 185 mm x 257 mm, Gewicht: 1179 g
Reihe: Nano and Energy
Modeling and Applications with Matlab(r)
Buch, Englisch, 538 Seiten, Format (B × H): 185 mm x 257 mm, Gewicht: 1179 g
Reihe: Nano and Energy
ISBN: 978-1-4398-4176-1
Verlag: CRC Press
Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale.
Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots.
Topics covered include:
- Modeling of nanoparticles and complex nano and MEMS systems
- Theory associated with micromagnetics
- Surface modeling of thin films
- Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation
- Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors
In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.
Zielgruppe
Professionals, researchers, and students in engineering, physics, chemistry, biology, and medicine, among other fields
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Naturwissenschaften Physik Angewandte Physik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
Weitere Infos & Material
Introduction to Computational Methods in Nanotechnology. Computational Modeling of Nanoparticles. Micromagnetics: Finite Element Analysis of Nano- Sized Magnetic Materials Using MATLAB®. System-Level Modeling of N/MEMS. Numerical Integrator for Continuum Equations of Surface Growth and Erosion. Configuration Optimizations and Photophysics Simulations of Single-Wall Nanotubes of Carbon, Silicon-Carbide, and Carbon-Nitride. MATLAB® Applications in Behavior Analysis of Systems Consisting of Carbon Nanotubes through Molecular Dynamics Simulation. Device and Circuit Modeling of Nano-CMOS. Computational and Experimental Approaches to Cellular and Subcellular Tracking at the Nanoscale. Computational Simulations of Nanoindentation and Nanoscratch. Modeling of Reversible Protein Conjugation on Nanoscale Surface. Computational Technology in Nanomedicine. Future Directions: Opportunities and Challenges. Appendices.