Buch, Englisch, Band 20, 483 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1930 g
Reihe: Algorithms and Combinatorics
Buch, Englisch, Band 20, 483 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1930 g
Reihe: Algorithms and Combinatorics
ISBN: 978-3-540-66024-8
Verlag: Springer
A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis.
This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the 1990's. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems.
This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science.
From the reviews:
"…The book has been prepared very carefully, contains a lot of interesting results and is highly recommended for graduate and postgraduate students."
András Recski, Mathematical Reviews Clippings 2000m:93006
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik Mathematik Operations Research Graphentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
Weitere Infos & Material
to Structural Approach #x2014; Overview of the Book.- Matrix, Graph, and Matroid.- Physical Observations for Mixed Matrix Formulation.- Theory and Application of Mixed Matrices.- Polynomial Matrix and Valuated Matroid.- Theory and Application of Mixed Polynomial Matrices.- Further Topics.