Murad / Eisenhofer | Catecholamines: Bridging Basic Science with Clinical Medicine | E-Book | sack.de
E-Book

E-Book, Englisch, 1084 Seiten, Web PDF

Murad / Eisenhofer Catecholamines: Bridging Basic Science with Clinical Medicine


1. Auflage 1997
ISBN: 978-0-08-058134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 1084 Seiten, Web PDF

ISBN: 978-0-08-058134-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume in Advances in Pharmacology focuses on all aspects of catecholamine research, from very basic to medical. It is broad based and covers many areas within physiology and medicine.

Murad / Eisenhofer Catecholamines: Bridging Basic Science with Clinical Medicine jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Catecholamines: Bridging Basic Science with Clinical Medicine;4
3;Copyright Page;5
4;Contents;6
5;Contributors;30
6;Preface;42
7;PART A: CATECHOLAMINE SYNTHESIS AND RELEASE;46
7.1;Overview;46
7.2;Section I: Regulation and Expression of Tyrosine Hydroxylase;47
7.2.1;Chapter 1. The Effect of Phosphorylation at Ser-40 on the Structure and Thermal Stability of Tyrosine Hydroxylase;60
7.2.2;Chapter 2. Factors Affecting Adrenal Medullary Catecholamine Biosynthesis and Release;63
7.2.3;Chapter 3. Regulation of Tyrosine Hydroxylase by Neuropeptides;66
7.2.4;Chapter 4. Regulation of Tyrosine Hydroxylase Gene Expression by Transsynaptic Mechanisms and Cell–Cell Contact;70
7.2.5;Chapter 5. A New Regulatory Protein of Catecholamine Synthesizing- Enzyme Expression;75
7.2.6;Chapter 6. Unique and Cell-Type-Specific Tyrosine Hydroxylase Gene Expression;78
7.2.7;Chapter 7. Triple Colocalization of Tyrosine Hydroxylase, Calretinin, and Calbindin D-28k in the Periventricular-Hypophyseal Dopaminergic Neuronal System;82
7.2.8;Chapter 8. Genetic Disorders Involving Recycling and Formation of Tetrahydrobiopterin;86
7.2.9;Chapter 9. Genetic Basis of Dominant Dystonia;89
7.2.10;Chapter 10. Mutations in the Tyrosine Hydroxylase Gene Cause Various Forms of L-Dopa-Responsive Dystonia;93
7.2.11;Chapter 11. Catecholamine Biosynthetic Enzyme Expression in Neurological and Psychiatric Disorders;95
7.3;Section II: Other Catecholamine–Synthesizing Enzymes;98
7.3.1;Chapter 12. Multiple Pathways in Regulation of Dopamine ß-Hydroxylase;98
7.3.2;Chapter 13. Examining Adrenergic Roles in Development, Physiology, and Behavior through Targeted Disruption of the Mouse Dopamine ß-Hydroxylase Gene;102
7.3.3;Chapter 14. Genetic Diseases of Hypotension;106
7.3.4;Chapter 15. Dopamine ß-Hydroxylase Deficiency Associated with Mutations in a Copper Transporter Gene;111
7.3.5;Chapter 16. Glucocorticoid–Phenylethanolamine–N–methyltransferase Interactions in Humans;114
7.3.6;Chapter 17. Determinants of Phenylethanolamine-N- methyltransferase Expression;118
7.3.7;Chapter 18. Neural Control of Phenylethanolamine-N- methyltransferase via Cholinergic Activation of Egr- I;122
7.3.8;Chapter 19. Synexin (Annexin VII) Hypothesis for Ca2+/GTP-Regulated Exocytosis;126
7.3.9;Chapter 20. Monoamine Transmitter Release from Small Synaptic and Large Dense-Core Vesicles;132
7.3.10;Chapter 21. Calcium Channels for Exocytosis in Chromaffin Cells;136
7.3.11;Chapter 22. Characteristics of Transmitter Secretion from Individual Sympathetic Varicosities;140
7.3.12;Chapter 23. Neurotransmitter Release at Individual Sympathetic Varicosities, Boutons;143
7.3.13;Chapter 24. Appropriate Target Cells Are Required for Maturation of Neurotransmitter Release Function of Sympathetic Neurons in Culture;147
7.3.14;Chapter 25. Effects of Neuropeptide Y at Sympathetic Neuroeffector Junctions;151
7.3.15;Chapter 26. Strategies for Receptor Control of Neurotransmitter Release;155
7.3.16;Chapter 27. Pattern of Adenosine Triphosphate and Norepinephrine Release and Clearance: Consequences for Neurotransmission;159
7.3.17;Chapter 28. Corelease of Norepinephrine and Adenosine Triphosphate from Sympathetic Neurones;165
7.3.18;Chapter 29. Neuropeptide Y: An Adrenergic Cotransmitter, Vasoconstrictor, and a Nerve-Derived Vascular Growth Factor;170
7.3.19;Chapter 30. Neuropeptide Y: A Cardiac Sympathetic Cotransmitter?;174
7.3.20;Chapter 31. Biochemistry of Somatodendritic Dopamine Release in Substantia Nigra: An in Vivo Comparison with Striatal Dopamine Release;178
7.3.21;Chapter 32. The Use of Dual-Probe Microdialysis for the Study of Catecholamine Release in the Brain and Pineal Gland;181
7.3.22;Chapter 33. Kinetics and Geometry of the Excitatory Dopaminergic Transmission in the Rat Striatum in Vivo;185
7.3.23;Chapter 34. In Vivo and in Vitro Assessment of Dopamine Uptake and Release;189
8;PART B: CATECHOLAMINE REUPTAKE AND STORAGE;194
8.1;Overview;194
8.2;Section I: The Plasma Membrane Transporters;195
8.2.1;Chapter 1. Molecular Physiology and Regulation of Catecholamine Transporters;209
8.2.2;Chapter 2. Localization of Dopamine Transporter Protein by Microscopic Histochemistry;213
8.2.3;Chapter 3. Cellular and Subcellular Localization of the Dopamine Transporter in Rat Cortex;216
8.2.4;Chapter 4. Cloned Catecholamine Transporters Expressed in Polarized Epithelial Cells: Sorting, Drug Sensitivity, and Ion-Coupling Stoichiometry;220
8.2.5;Chapter 5. Inactivation of the Dopamine Transporter Reveals Essential Roles of Dopamine in the Control of Locomotion, Psychostimulant Response, and Pituitary Function;224
8.2.6;Chapter 6. Role of Protein Kinase C and Second Messengers in Regulation of the Norepinephrine Transporter;228
8.2.7;Chapter 7. Electrophysiological Analysis of Transporter Function;231
8.2.8;Chapter 8. Voltammetric Approaches to Kinetics and Mechanism of the Norepinephrine Transporter;236
8.2.9;Chapter 9. Voltage-Dependency of the Dopamine Transporter in Rat Brain;240
8.2.10;Chapter 10. Modulation of Quantal Dopamine Release by Psychostimulants;243
8.2.11;Chapter 11. Regulation of Dopamine Transporter mRNA Levels in the Central Nervous System;247
8.2.12;Chapter 12. Structural Diversity in the Catecholamine Transporter Gene Family: Molecular Cloning and Characterization of an L-Epinephrine Transporter from Bullfrog Sympathetic Ganglia;251
8.2.13;Chapter 13. Positron Emission Tomography Radiogands for Dopamine Transporters and Studies in Human and Nonhuman Primates;256
8.2.14;Chapter 14. Single Photon Emission Computed Tomography Imaging of Dopaminergic Function: Presynaptic Transporter, Postsynaptic Receptor, and “Intrasynaptic” Transmitter;260
8.2.15;Chapter 15. Dopamine Transporter Changes in Neuropsychiatric Disorders;264
8.3;Section II: Vesicular Transporters and Catecholamine Storage;264
8.3.1;Chapter 16. Molecular and Biochemical Studies of Rat Vesicular Monoamine Transporter;268
8.3.2;Chapter 17. A Chimeric Vesicular Monoamine Transporter Dissociates Sensitivity t o Tetrabenazine and Unsubstituted Aromatic Amines;272
8.3.3;Chapter 18. Ligand Recognition by the Vesicular Monoamine Transporters;277
8.3.4;Chapter 19. Molecular Pharmacology of the Vesicular Monoamine Transporter;281
8.3.5;Chapter 20. Ultrastructural Localization of the Vesicular Monoamine Transporter 2 in Mesolimbic and Nigrostriatal Dopaminergic Neurons;285
8.3.6;Chapter 21. ICA 512, Receptor Tyrosine Phosphatase-Like Protein, is Concentrated in Neurosecretory Granule Membranes;288
8.3.7;Chapter 22. Protein Targeting in Neurons and Endocrine Cells;292
8.3.8;Chapter 23. The Vesicular Monoamine Transporter VMAT2 and Vesicular Acetylcholine Transporter VAChT Are Sorted to Separate Vesicle Populations in PC I 2 Cells;295
8.3.9;Chapter 24. Recycling of Synaptic Vesicles;298
8.3.10;Chapter 25. The Secretory Cocktail of Adrenergic Large Dense-Core Vesicles: The Functional Role of the Chromogranins;302
8.3.11;Chapter 26. A Novel, Catecholamine Release-Inhibitory Peptide from Chromogranin A: Autocrine Control of Nicotinic Cholinergic-Stimulated Exocytosis;305
8.3.12;Chapter 27. Transcription Regulation Coupled to Calcium and Protein Kinase Signaling Systems through TRE- and CRE-Like Sequences in Neuropeptide Genes;309
8.3.13;Chapter 28. Imaging of Monoaminergic and Cholinergic Vesicular Transporters in the Brain;314
9;PART C: CATECHOLAMINE METABOLISM: FROM MOLECULAR UNDERSTANDING TO CLINICAL DIAGNOSIS AND TREATMENT;318
9.1;Overview;318
9.2;Section I: Monoamine Oxidase;318
9.2.1;Chapter 1. Monoamine Oxidase A and B: Structure, Function, and Behavior;337
9.2.2;Chapter 2. Genetic Deficiencies of Monoamine Oxidase Isoenzymes: A Key to Understanding the Function of the Enzymes in Humans;342
9.2.3;Chapter 3. Biological Markers, with Special Regard to Platelet Monoamine Oxidase (trbc-MAO), for Personality and Personality Disorders;346
9.2.4;Chapter 4. Visualization of Monoamine Oxidase in Human Brain;349
9.2.5;Chapter 5. Aliphatic N-Methylpropargylamines: Monoamine Oxidase-B Inhibitors and Antiapoptotic Drugs;353
9.2.6;Chapter 6. Antiapoptotic Actions of Monoamine Oxidase B Inhibitors;357
9.2.7;Chapter 7. Therapeutic Actions of L-Deprenyl in Dogs: A Model of Human Brain Aging;361
9.2.8;Chapter 8. Apomorphine Is a Potent Radical Scavenger and Protects Cultured Pheochromocytoma Cells from 6-OHDA and H2O2-lnduced Cell Death;365
9.3;Section II: O–Methylation and Conjugation;369
9.3.1;Chapter 9. Catechol O-Methyltransferase: Characterization of the Protein, Its Gene, and the Preclinical Pharmacology of COMT Inhibitors;369
9.3.2;Chapter 10. X-Ray Crystallography of Catechol O–Methyltransferase: Perspectives for Target-Based Drug Development;373
9.3.3;Chapter 11. Catechol O–Methyltransferase Inhibition and the Treatment of Parkinson’s Disease;376
9.3.4;Chapter 12. The Structure and Function of the UDP- Glucuronosyltransferase Gene Family;380
9.3.5;Chapter 13. Catecholamine Sulfation in Health and Disease;384
9.3.6;Chapter 14. Metabolism of Endobiotics and Xenobiotics by UDP- Glucuronosyltransferase;388
9.4;Section III: Catecholamine Metabolizing Systems;391
9.4.1;Chapter 15. Molecular Structure of the Carrier Responsible for Hepatic Uptake of Catecholamines;391
9.4.2;Chapter 16. Catecholamine Uptake and Metabolism in the Liver;395
9.4.3;Chapter 17. Catecholamine Uptake and Metabolism in Rat Lungs;398
9.4.4;Chapter 18. The Extraneuronal Monoamine Transporter Exists in Human Central Nervous System Glia;401
9.4.5;Chapter 19. Removal of Circulating Catecholamines by Extraneuronal Amine Transport Systems;405
9.4.6;Chapter 20. Catecholamine Metabolites in Internal Jugular Plasma: A Window into the Human Brain;409
9.4.7;Chapter 21. Norepinephrine Metabolites in Plasma as Indicators of Pharmacological Inhibition of Monoamine Oxidase and Catechol O–Methyltransferase;412
9.4.8;Chapter 22. The Adrenal Gland as a Source of Dihydroxyphenylalanine and Catecholamine Metabolites;415
9.4.9;Chapter 23. Clues to the Diagnosis of Pheochromocytoma from the Differential Tissue Metabolism of Catecholamines;419
10;PART D: CATECHOLAMINE RECEPTORS AND SIGNAL TRANSDUCTION;424
10.1;Overview;424
10.2;Section I: Structure, Classification, and Tissue Localization of Catecholamine Receptor Subtypes;424
10.2.1;Chapter 1. Expression and Regulation of a1-Adrenergic Receptors in Human Tissues;435
10.2.2;Chapter 2. a1-Adrenoceptor Subtypes in the Human Cardiovascular and Urogenital Systems;439
10.2.3;Chapter 3. Molecular Mechanisms of Ligand Binding and Activation of a1-Adrenergic Receptors;443
10.2.4;Chapter 4. Expansion of the Dopamine DI Receptor Gene Family: Defining Molecular, Pharmacological, and Functional Criteria for D I A, D I B, D I C, and D I D Receptors;449
10.2.5;Chapter 5. DI/D3 Receptor Relationships in Brain: Coexpression, Coactivation, and Coregulation;453
10.2.6;Chapter 6. Mapping the Binding-Site Crevice of the D2 Receptor;457
10.3;Section II: lntracellular Mechanisms;461
10.3.1;Chapter 7. Mechanisms of ß-Adrenergic Receptor Desensitization and Resensitization;461
10.3.2;Chapter 8. Role of ß-Arrestins in the Intracellular Trafficking of G–Protein–Coupled Receptors;465
10.3.3;Chapter 9. G-Protein-Linked Receptors as Substrates for Tyrosine Kinases: Cross-Talk in Signaling;470
10.3.4;Chapter 10. Role of Arrestins in G-Protein-Coupled Receptor Endocytosis;474
10.3.5;Chapter 11. Subtype-Specific Regulation of the ß-Adrenergic Receptors;478
10.3.6;Chapter 12. Structural Determinants of a2-Adrenergic Receptor Regulation;483
10.3.7;Chapter 13. Regulation of D2 and D3 Receptors in Transfected Cells by Agonists and Antagonists;488
10.3.8;Chapter 14. Regulation of the D I Dopamine Receptor through CAMP- Mediated Pathways;492
10.3.9;Chapter 15. Mechanisms for Activation of Multiple Effectors by a1- Adrenergic Receptors;496
10.3.10;Chapter 16. Signal Transduction Pathways Modulated by D2-Like Dopamine Receptors;499
10.3.11;Chapter 17. Guanosine Triphosphatase–Activating Proteins for Heterotrimetric G-Proteins;503
10.3.12;Chapter 18. Regulation of the Stoichiometry of Protein Components of the Stimulatory Adenylyl Cyclase Cascade;507
10.3.13;Chapter 19. Regulation of Mitogen-Activated Protein Kinase Pathways by Catecholamine Receptors;511
10.4;Section III: Pharmacology;511
10.4.1;Chapter 20. Examination of Ligand-Induced Conformational Changes in the ß2-Adrenergic Receptor by Fluorescence Spectroscopy;515
10.4.2;Chapter 21. Relationship between a2–Adrenergic Receptors and Imidazoline/Guanidinium Receptive Sites;519
10.4.3;Chapter 22. Dopamine D4 Receptors May Alleviate Antipsychotic- Induced Parkonsonism;523
10.4.4;Chapter 23. Binding of Typical and Atypical Antipsychotic Drugs to Multiple Neurotransmitter Receptors;527
10.4.5;Chapter 24. Structural and Functional Characteristics of the Dopamine D4 Receptor;531
10.4.6;Chapter 25. NGD 94- I : A Specific Dopamine-4-Receptor Antagonist;535
10.5;Section IV: Catecholamine Receptors in Physiology and Behavior;538
10.5.1;Chapter 26. In Vivo Mutation of the a2A-Adrenergic Receptor by Homologous Recombination Reveals the Role of This Receptor Subtype in Multiple Physiological Processes;538
10.5.2;Chapter 27. Regulation of Fat-Cell Function by a2-Adrenergic Receptors;541
10.5.3;Chapter 28. The Developmental and Physiological Consequences of Disrupting Genes Encoding ß1 and ß2 Adrenoceptors;544
10.5.4;Chapter 29. Myocardial Overexpression of Adrenergic Receptors and Receptor Kinases;547
10.5.5;Chapter 30. Cardiac G-Protein Receptor Kinase Activity: Effect of a ß-Adrenergic Receptor Antagonist;552
10.5.6;Chapter 31. Structure and Function of the ß3 Adrenoceptor;556
10.5.7;Chapter 32. Behavioral Analysis of Multiple D I -Like Dopamine Receptor Subtypes: New Agents and Studies in Transgenic Mice with D I A Receptor Knockout;559
10.5.8;Chapter 33. Antisense Knockdown of Brain Dopamine Receptors;562
10.5.9;Chapter 34. The Physiological Role of Dopamine D2 Receptors;566
10.6;Section V: Pathophysiological States;570
10.6.1;Chapter 35. Regulation of D I Receptor Function in Spontaneous Hypertension;570
11;PART E: CATECHOLAMINES IN THE PERIPHERY;574
11.1;Overview;574
11.2;Section I: Assessment of Peripheral Catecholaminergic Function;585
11.2.1;Chapter 1. *Peripheral Catecholaminergic Function Evaluated by Norepinephrine Measurements in Plasma, Extracellular Fluid, and Lymphocytes, from Nerve Recordings and Cellular Responses;585
11.2.2;Chapter 2. Cardiac Microdialysis;589
11.2.3;Chapter 3. Sympathetic Microneurography and Neurocirculatory Function: Studies of Ventricular Arrhythmias in Humans;593
11.3;Section II: Catecholamines and Stress;597
11.3.1;Chapter 4. Stress as a Medical and Scientific Idea and Its Implications;597
11.3.2;Chapter 5. Stressor Specificity of Peripheral Catecholaminergic Activation;601
11.3.3;Chapter 6. Stressor-Specific Activation of Catecholaminergic Systems: Implications for Stress-Related Hypothalamic- Pituitary-Adrenocortical Responses;606
11.3.4;Chapter 7. Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes by Stress;609
11.4;Section III: Catecholamines and Pain;612
11.4.1;Chapter 8. Peripheral Modulatory Effects of Catecholamines in Inflammatory and Neuropathic Pain;612
11.4.2;Chapter 9. Brain Catecholamine Systems in Stress;617
11.4.3;Chapter 10. a2-Adrenergic Mechanisms of Analgesia: Strategies for Improving Their Therapeutic Window and Identification of the Novel, Potent a2A-Adrenergic Receptor Agonist, S 18616;620
11.4.4;Chapter 11. Cellular Transplantation for Intractable Pain;624
11.5;Section IV: Catecholamines and Neuroimmunology;628
11.5.1;Chapter 12. The Role of the Sympathetic Nervous System in the Modulation of Immune Responses;628
11.5.2;Chapter 13. Catecholamines, Catecholamine Receptors, Cell Adhesion Molecules, and Acute Stressor-Related Changes in Cellular Immunity;632
11.5.3;Chapter 14. Nerve Growth Factor and Autoimmune Disease: Role of Tumor Necrosis Factor- a?;636
11.6;Section V: Adrenomedullary Secretion and Co-Secretion;640
11.6.1;Chapter 15. Multiple Transmitter Control of Catecholamine Secretion in Rat Adrenal Medulla;640
11.6.2;Chapter 16. Adrenomedullin in Cardiovascular Disease;644
11.6.3;Chapter 17. Strychnine, Glycine, and Adrenomedullary Secretion;649
11.7;Section VI: Neurocardiology;652
11.7.1;Chapter 18. Catecholamines and Neurocardiogenic Syncope;652
11.7.2;Chapter 19. ß-Blockers in Congestive Heart Failure: The Pharmacology of Carvedilol, a Vasodilating ß-Blocker and Antioxidant, and Its Therapeutic Utility in Congestive Heart Failure;656
11.7.3;Chapter 20. Sympathetic Cardioneurotherapy in Dysautonomias;660
11.8;Section VII: Catecholamines and Metabolism;665
11.8.1;Chapter 21. Hypoglycemia-Associated Autonomic Failure in Insulin- Dependent Diabetes Mellitus;665
11.8.2;Chapter 22. Mechanisms of the Sympathoadrenal Response to Hypoglycemia;667
11.8.3;Chapter 23. Importance of Catecholamines in Defense against Insulin Hypoglycemia in Humans;672
11.8.4;Chapter 24. Sympathetic Nervous Activity and the Thermic Effect of Food in Humans;675
11.8.5;Chapter 25. Microdialysis for the Assessment of Catecholamine-Induced Lipolysis in Human Adipose and Skeletal Muscle Tissue;679
11.9;Section VIII: Catecholamines in the Bruin and Regulation of the Cardiovascular System;683
11.9.1;Chapter 26. Bulbospinal Cl -Adrenergic Neurons: Electrophysiological Properties in the Neonate Rat;683
11.9.2;Chapter 27. Catecholamines, Opioids, and Vagal Afferents in the Nucleus of the Solitary Tract;687
11.9.3;Chapter 28. Agmatine: A Novel Neurotransmitter?;690
11.9.4;Chapter 29. Central and Peripheral Norepinephrine Kinetics in Heart Failure, Coronary Artery Disease, and Hypertension;695
12;PART F: CATECHOLAMINES IN THE CENTRAL NERVOUS SYSTEM;700
12.1;Overview;700
12.2;Chapter 1. Dopamine-Mediated Gene Regulation in the Striatum;715
12.3;Chapter 2. Dopamine Control of Gene Expression in Basal Ganglia Nuclei: Striatal and Nonstriatal Mechanisms;719
12.4;Chapter 3. Dopaminergic Regulation of Immediate Early Gene Expression in the Basal Ganglia;723
12.5;Chapter 4. Dopamine and Calcium Signal Interactions in the Developing Striatum: Control by Kinetics of CREB Phosphorylation;727
12.6;Chapter 5. The Phasic Reward Signal of Primate Dopamine Neurons;731
12.7;Chapter 6. Afferent Control of Midbrain Dopamine Neurons: An lntracellular Perspective;736
12.8;Chapter 7. GABAergic Control of the Firing Pattern of Substantia Nigra Dopaminergic Neurons;739
12.9;Chapter 8. Afferent Control of Substantia Nigra Compacta Dopamine Neurons: Anatomical Perspective and Role of Glutamatergic and Cholinergic Inputs;745
12.10;Chapter 9. Dopamine Axons in Primate Prefrontal Cortex: Specificity of Distribution, Synaptic Targets, and Development;748
12.11;Chapter 10. The Cortical Dopamine System: Role in Memory and Cognition;752
12.12;Chapter 11. Norepinephrine–Dopamine Interactions in the Prefrontal Cortex and the Ventral Tegmental Area: Relevance to Mental Diseases;757
12.13;Chapter 12. Dopamine Function in the Prefrontal Cortex;762
12.14;Chapter 13. The Modulation of Corticoaccumbens Transmission by Limbic Afferents and Dopamine: A Model for the Pathophysiology of Schizophrenia;766
12.15;Chapter 14. Dopamine Modulation of Responses Mediated by Excitatory Amino Acids in the Neostriatum;769
12.16;Chapter 15. The Molecular Basis of Dopamine and Glutamate Interactions in the Striatum;774
12.17;Chapter 16. Modulation by Dopamine of Rat Corticostriatal Input;778
12.18;Chapter 17. Dopamine, Glutamate, and Behavioral Correlates of Striatal Neuronal Activity;782
12.19;Chapter 18. State-Related Activity, Reactivity of Locus Ceruleus Neurons in Behaving Monkeys;785
12.20;Chapter 19. Modulation of Forebrain Electroencephalographic Activity and Behavioral State by the Locus Ceruleus–Noradrenergic System: Involvement of the Medial Septa1 Area;789
12.21;Chapter 20. New Perspectives on the Functional Organization and Postsynaptic Influences of the Locus Ceruleus Efferent Projection System;794
12.22;Chapter 21. Neuromodulation and Cognitive Performance: Recent Studies of Noradrenergic Locus Ceruleus in Behaving Monkeys;800
12.23;Chapter 22. Noradrenergic Effects on Activity of Prefrontal Cortical Neurons in Behaving Monkeys;804
12.24;Chapter 23. Noradrenergic Influences on Prefrontal Cortical Cognitive Function: Opposing Actions at Postjunctional a1- Versus a2-Adrenergic Receptors;809
12.25;Chapter 24. Afferent Control of Nucleus Locus Ceruleus: Differential Regulation by “Shell” and “Core” Inputs;812
12.26;Chapter 25. Sensory Response of the Locus Ceruleus: Neonatal and Adult Studies;817
12.27;Chapter 26. Noradrenergic Modulation of the Prefrontal Cortex as Revealed by Electron Microscopic Immunocytochemistry;822
12.28;Chapter 27. Activation of the Locus Ceruleus Brain Noradrenergic System during Stress: Circuitry, Consequences, and Regulation;826
12.29;Chapter 28. Norepinephrine and Schizophrenia: A New Hypothesis for Antipsychotic Drug Action;830
12.30;Chapter 29. Neurochemical Responses to Lesions of Dopaminergic Neurons: Implications for Compensation and Neuropathology;833
12.31;Chapter 30. Dopamine Receptor Subtypes as Targets for the Pharmacotherapy of Parkinson’s Disease;837
12.32;Chapter 31. Free Radicals and MPTP-Induced Selective Destruction of Substantia Nigra Compacta Neurons;841
12.33;Chapter 32. Application of Gene Therapy for Parkinson’s Disease: Nonhuman Primate Experience;846
12.34;Chapter 33. Prefrontal Cortical and Hippocampal Modulation of Dopamine-Mediated Effects;851
12.35;Chapter 34. Dysregulation of Mesoprefrontal Dopamine Neurons Induced by Acute and Repeated Phencyclidine Administration in the Nonhuman Primate: Implications for Schizophrenia;855
12.36;Chapter 35. Interactions between Catecholamines and Serotonin: Relevance to the Pharmacology of Schizophrenia;859
13;PART G: NOVEL CATECHOLAMINERGIC SYSTEMS;864
13.1;Overview;864
13.2;Section I: Catecholestrogens;869
13.2.1;Chapter 1. Catecholestrogens in the Induction of Tumors in the Kidney of the Syrian Hamster;869
13.2.2;Chapter 2. Biosynthesis and Inactivation of Catecholestrogens;873
13.2.3;Chapter 3. Catecholestrogens as Procarcinogens: Depurinating Adducts and Tumor Initiation;878
13.2.4;Chapter 4. Role of Aromatic Hydrocarbons in Disclosing How Catecholestrogens Initiate Cancer;882
13.2.5;Chapter 5. Embryo Implantation Requires Estrogen-Directed Uterine Preparation and Catecholestrogen-Mediated Embryonic Activation;885
13.3;Section II: Nonneuronal Biosynthesis of Catecholamines;888
13.3.1;Chapter 6. Extra-Adrenal Nonneuronal Epinephrine and P henylethanolamine-N-methyltransferase;888
13.3.2;Chapter 7. Dopamine and the Brain–Gut Axis;891
13.3.3;Chapter 8. Origin and Significance of Plasma Dihydroxyphenylalanine;896
13.4;Section III: Is L–Dopa Neurotransmitter?;900
13.4.1;Chapter 9. Is L-Dopa a Neurotransmitter of the Primary Baroreceptor Afferents Terminating in the Nucleus Tractus Solitarri of Rats?;900
13.4.2;Chapter 10. lmmunocytochemical Evidence of Novel Catecholamine- or Biopterin-Related Neurons of Mammalian Brain;904
13.4.3;Chapter 11. Fluorinated Dihydroxyphenylserines as Potential Biological Precursors of Fluorinated Norepinephrines;907
13.5;Section IV: Dopamine as a Renal Autocrine-Paracrine Substance;911
13.5.1;Chapter 12. Nonneuronal Dopamine;911
13.5.2;Chapter 13. The Renal Dopamine System;915
13.5.3;Chapter 14. Renal Dopamine Production and Release in the Rat: A Microdialysis Study;918
14;PART H: DEVELOPMENT AND PLASTICITY;922
14.1;Overview;922
14.2;Chapter 1. Inductive Interactions Underlie Neural Crest Formation;928
14.3;Chapter 2. Lineage Commitment and Fate of Neural Crest-Derived Neurogenic Cells;932
14.4;Chapter 3. The Differentiation of the Neurotransmitter Phenotypes in Chick Sympathetic Neurons;936
14.5;Chapter 4. Developmental Regulation of Neurotransmitters in Sympathetic Neurons;940
14.6;Chapter 5. Changes in Gene Expression in Adult Sympathetic Neurons after Axonal Injury;944
14.7;Chapter 6. Ontogeny of Vesicular Amine Transporter Expression in the Rat: New Perspectives on Aminergic Neuronal and Neuroendocrine Differentiation;948
14.8;Chapter 7. Specification and Survival of Dopaminergic Neurons in the Mammalian Midbrain;953
14.9;Chapter 8. Effects of Glial Cell Line-Derived Neurotrophic Factor on the Nigrostriatal Dopamine System in Rodents and Nonhuman Primates;956
14.10;Chapter 9. Cell Body Functions of Brain-Derived Neurotrophic Factor Increase Forebrain Dopamine Release and Serotonin Metabolism Determined with in Vivo Microdialysis;960
14.11;Chapter 10. Neurotrophin Modulation of Hippocampal Synaptic Transmission;966
14.12;Chapter 11. Genotype and Phenotype in Familial Dysautonomia;970
14.13;Chapter 12. A Gene Therapy Approach for the Treatment of Amyotrophic Lateral Sclerosis and Parkinson’s Disease;974
14.14;Chapter 13. Characterization of Adrenal Chromafin Progenitor Cells in Mice;977
14.15;Chapter 14. Evolution and Origin of the Diversity of Dopamine Receptors in Vertebrates;981
14.16;Chapter 15. Neurogenetics of Synaptic Transmission in Caenorhabditis elegans;985
14.17;Chapter 16. Decapitated Drosophila: A Novel System for the Study of Biogenic Amines;990
14.18;Chapter 17. Dopaminergic Control of Serotonergic Neuron Development in the Grasshopper Central Nervous System;994
14.19;Chapter 18. Noradrenergic Long-Term Potentiation in the Dentate Gyrus;997
14.20;Chapter 19. Rapid Acquisition of Discriminative Responding in Monkey Locus Coeruleus Neurons;1001
14.21;Chapter 20. Catecholaminergic Contributions to Early Learning;1006
14.22;Chapter 21. Interactions between Catecholamines and the Amygdala in Emotional Memory: Subclinical and Clinical Evidence;1009
15;PART I: DRUG ABUSE AND ALCOHOLISM;1014
15.1;Overview;1014
15.2;Chapter 1. Circuits, Drugs, and Drug Addiction;1023
15.3;Chapter 2. Homologies and Differences in the Actions of Drugs of Abuse and a Conventional Reinforcer (Food) on Dopamine Transmission: An Interpretative Framework of the Mechanism of Drug Dependence;1028
15.4;Chapter 3. Drug-Induced Adaptations in Catecholamine Systems: On the Inevitability of Sensitization;1032
15.5;Chapter 4. Neurobiological Substrates Underlying Conditioned Effects of Cocaine;1036
15.6;Chapter 5. The Rate Hypothesis and Agonist Substitution Approaches to Cocaine Abuse Treatment;1040
15.7;Chapter 6. Drugs of Abuse and Dopamine Cell Activity;1043
15.8;Chapter 7. DI -Receptor Regulation of Synaptic Potentials in the Ventral Tegmental Area after Chronic Drug Abuse;1047
15.9;Chapter 8. Neuroadaptations in Nucleus Accumbens Neurons Resulting from Repeated Cocaine Administration;1051
15.10;Chapter 9. Dopamine Efflux Studies into the in Vivo Actions of Psychostimulant Drugs;1055
15.11;Chapter 10. Psychostimulants and Neuropeptide Response;1059
15.12;Chapter 11. Drugs of Abuse and Striatal Gene Expression;1062
15.13;Chapter 12. Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons;1065
15.14;Chapter 13. Dopaminergic Genes and Substance Abuse;1069
15.15;Chapter 14. Quantitative Trait Loci: Mapping Drug and Alcohol- Related Genes;1078
15.16;Chapter 15. Nuclear Memory: Gene Transcription and Behavior;1082
15.17;Chapter 16. Phosphorylation of Dopamine Transporters and Rapid Adaptation to Cocaine;1087
16;Index;1092
17;Contents of Previous Volumes;1116



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.