Mulaik | Linear Causal Modeling with Structural Equations | Buch | 978-1-4398-0038-6 | sack.de

Buch, Englisch, 468 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 900 g

Reihe: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences

Mulaik

Linear Causal Modeling with Structural Equations


1. Auflage 2009
ISBN: 978-1-4398-0038-6
Verlag: CRC Press

Buch, Englisch, 468 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 900 g

Reihe: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences

ISBN: 978-1-4398-0038-6
Verlag: CRC Press


Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal relations directly by perceiving quantities in magnitudes and motions of causes that are conserved in the effects of causal exchanges.

The author surveys the basic concepts of graph theory useful in the formulation of structural models. Focusing on SEM, he shows how to write a set of structural equations corresponding to the path diagram, describes two ways of computing variances and covariances of variables in a structural equation model, and introduces matrix equations for the general structural equation model. The text then discusses the problem of identifying a model, parameter estimation, issues involved in designing structural equation models, the application of confirmatory factor analysis, equivalent models, the use of instrumental variables to resolve issues of causal direction and mediated causation, longitudinal modeling, and nonrecursive models with loops. It also evaluates models on several dimensions and examines the polychoric and polyserial correlation coefficients and their derivation.

Covering the fundamentals of algebra and the history of causality, this book provides a solid understanding of causation, linear causal modeling, and SEM. It takes readers through the process of identifying, estimating, analyzing, and evaluating a range of models.

Mulaik Linear Causal Modeling with Structural Equations jetzt bestellen!

Zielgruppe


Researchers and graduate students in psychology, sociology, educational measurement, marketing, organizational behavior, health sciences, and statistics.


Autoren/Hrsg.


Weitere Infos & Material


Introduction. Mathematical Foundations for Structural Equation Modeling. Causation. Graph Theory for Causal Modeling. Structural Equation Models. Identification. Estimation of Parameters. Designing SEM Studies. Confirmatory Factor Analysis. Equivalent Models. Instrumental Variables. Multilevel Models. Longitudinal Models. Nonrecursive Models. Model Evaluation. Polychoric Correlation and Polyserial Correlation. References. Index.


Stanley A. Mulaik is Professor Emeritus in the School of Psychology at the Georgia Institute of Technology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.