Buch, Englisch, 232 Seiten, PB, Format (B × H): 170 mm x 240 mm
ISBN: 978-3-8325-5444-6
Verlag: Logos
Big data thrives on extracting knowledge from a large number of data sets. But how is an application possible when a single data set is several gigabytes in size?
The innovative data compression techniques from the field of machine learning and modeling using Bayesian networks, which have been theoretically developed and practically implemented here, can reduce these huge amounts of data to a manageable size. By eliminating redundancies in location, time, and between simulation results, data reductions to less than 1% of the original size are possible. The developed method represents a promising approach whose use goes far beyond the application example of crash test simulations chosen here.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Fahrzeugtechnik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik Mathematik Stochastik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Cloud-Computing, Grid-Computing
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik