Movchan / Jones / Colquitt | Mathematical Modelling of Waves in Multi-Scale Structured Media | Buch | 978-1-4987-8209-8 | sack.de

Buch, Englisch, 258 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 555 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Movchan / Jones / Colquitt

Mathematical Modelling of Waves in Multi-Scale Structured Media


1. Auflage 2017
ISBN: 978-1-4987-8209-8
Verlag: Chapman and Hall/CRC

Buch, Englisch, 258 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 555 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

ISBN: 978-1-4987-8209-8
Verlag: Chapman and Hall/CRC


Mathematical Modelling of Waves in Multi-Scale Structured Media presents novel analytical and numerical models of waves in structured elastic media, with emphasis on the asymptotic analysis of phenomena such as dynamic anisotropy, localisation, filtering and polarisation as well as on the modelling of photonic, phononic, and platonic crystals.

Movchan / Jones / Colquitt Mathematical Modelling of Waves in Multi-Scale Structured Media jetzt bestellen!

Weitere Infos & Material


Introduction and literature survey. Foundations, methods of analysis of waves and analytical approaches to modelling of multi-scale solids. Linear differential operators and distributions. Waves in 1D, 2D and 3D media. Fundamental solutions. Integral transforms and their applications in modelling of waves. Dispersion. Periodic systems, Floquet-Bloch waves. Lattice dynamics. Asymptotic analysis and singular perturbations. Waves in structured media with thin ligaments and disintegrating junctions. Multi-resonator systems. Singular perturbation analysis of fields in solids with disintegrating junctions. Floquet-Bloch waves in periodic multi-resonator systems. Standing waves. Asymptotic estimates for their frequencies. Tuneable multi-resonator systems. Transmission of waves by structured interfaces containing multi-scale resonators. Negative refraction and localisation of waves in structured solids with thin ligaments. Dynamic response of elastic lattices and discretised elastic membranes. Lattice Green’s functions in dynamics. Dynamic anisotropy and localisation near defects. Stop-band Green’s functions and strong exponential localisation. Localisation near cracks/inclusions in a lattice. Cloaking and channelling of elastic waves in structured solids. A cloak is not a shield. Cloaking as a channelling method for incident waves. Boundary conditions on the interior contour of a cloak. Cloaking in elastic plates. Singular perturbation analysis of an approximate cloak. Example of an "impossible cloaking" problem. Structured interfaces in dynamics of elastic solids. Structured interfaces as filters and polarisers. Vortex-type resonators and chiral polarisers of elastic waves. Coated inclusions in dynamics, scattering and neutrality. Lattice approximations of filters and polarisers. Electronic Appendix: Illustrative animations


Alexander Movchan is a Professor at the University of Liverpool, Natasha Movchan is a Professor at the University of Liverpool, Ian Jones is a Professor at Liverpool John Moores University and an Honorary Fellow at the University of Liverpool, and Daniel Colquitt is a Lecturer at the University of Liverpool. The authors have worked on wave propagation in multi-scale elastic media over many years and have developed novel modelling approaches, which have opened efficient ways to design and study the dynamic response of multi-scale structures known as elastic metamaterials introduced within the last decade.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.