Motai Data-Variant Kernel Analysis


1. Auflage 2015
ISBN: 978-1-119-01933-6
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: 0 - No protection

E-Book, Englisch, 256 Seiten, E-Book

Reihe: Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control

ISBN: 978-1-119-01933-6
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: 0 - No protection



Describes and discusses the variants of kernel analysismethods for data types that have been intensely studied in recentyears
This book covers kernel analysis topics ranging from thefundamental theory of kernel functions to its applications. Thebook surveys the current status, popular trends, and developmentsin kernel analysis studies. The author discusses multiple kernellearning algorithms and how to choose the appropriate kernelsduring the learning phase. Data-Variant Kernel Analysis is anew pattern analysis framework for different types of dataconfigurations. The chapters include data formations of offline,distributed, online, cloud, and longitudinal data, used for kernelanalysis to classify and predict future state.
Data-Variant Kernel Analysis:
* Surveys the kernel analysis in the traditionally developedmachine learning techniques, such as Neural Networks (NN), SupportVector Machines (SVM), and Principal Component Analysis (PCA)
* Develops group kernel analysis with the distributed databasesto compare speed and memory usages
* Explores the possibility of real-time processes by synthesizingoffline and online databases
* Applies the assembled databases to compare cloud computingenvironments
* Examines the prediction of longitudinal data withtime-sequential configurations
Data-Variant Kernel Analysis is a detailed reference forgraduate students as well as electrical and computer engineersinterested in pattern analysis and its application in colon cancerdetection.

Motai Data-Variant Kernel Analysis jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Yuichi Motai, Ph.D., is an Associate Professor of Electrical and Computer Engineering at the Virginia Commonwealth University, Richmond, Virginia. He received his Ph.D. with the Robot Vision Laboratory in the School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana in 2002.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.