Buch, Englisch, 226 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
Buch, Englisch, 226 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
ISBN: 978-0-8176-4396-6
Verlag: Birkhäuser Boston
The field of convex geometry has become a fertile subject of mathematical activity in the past few decades. This exposition, examining in detail those topics in convex geometry that are concerned with Euclidean space, is enriched by numerous examples, illustrations, and exercises, with a good bibliography and index. It requires of the reader only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory. The book can be used in the classroom setting for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization. Researchers in pure and applied areas will also benefit from the book.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
I.- Metric Spaces.- Subsets of Euclidean Space.- Basic Properties of Convex Sets.- Transformations of the Space Kn of Compact Convex Sets.- Rounding Theorems.- Convex Polytopes.- Functionals on the Space Kn. The Steiner Theorem.- The Hadwiger Theorems.- Applications of the Hadwiger Theorems.- II.- Curvature and Surface Area Measures.- Sets with positive reach. Convexity ring.- Selectors for Convex Bodies.- Polarity.- III.- Star Sets. Star Bodies.- Intersection Bodies.- Selectors for Star Bodies.