Moser | Fritz John Collected Papers | Buch | 978-0-8176-3267-0 | sack.de

Buch, Englisch, 754 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 3650 g

Reihe: Contemporary Mathematicians

Moser

Fritz John Collected Papers

Volume 2

Buch, Englisch, 754 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 3650 g

Reihe: Contemporary Mathematicians

ISBN: 978-0-8176-3267-0
Verlag: Birkhäuser


Moser Fritz John Collected Papers jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Fritz John; Collected Works Contents - Volume 2.- V Papers on Numerical Methods.- [29] On integration of parabolic equations by difference methods (1952).- Commentary on [29].- VI Papers on Elasticity Theory.- [46] Plane strain problems for a perfectly elastic material of harmonic type (1960).- [51a] Perfectly elastic bodies of harmonic type (1963).- [56] Estimates for the derivatives of the stresses in a thin shell and interior shell equations (1965).- [59] Plane elastic waves of finite amplitude (1966).- [70] Distance changes in deformations with small strain (1970).- [71] Refined interior equations for thin plastic shells (1971).- [74] The transition from thin plate to membrane in the case of a plate under uniform tension (1972).- [75] Uniqueness of nonlinear elastic equilibrium for prescribed boundary displacements and sufficiently small strains (1972).- [80] The transition from thin plate to membrane in the equations of V. Karman-Föppl (1975).- [87] Finite amplitude waves in a homogeneous isotropic elastic solid (1977).- [96] Instability of finite amplitude elastic waves (1981).- Commentary on [56], [71], and [74].- VII Papers on Water Waves.- [18] Waves in the presence of an inclined barrier (1948).- [22] On the motion of floating bodies, I (1949).- [24] On the motion of floating bodies, II (1950).- [32] Two-dimensional potential flows with a free boundary (1953).- Commentary on [22], [24], and [32].- VIII Papers on Geometric Inequaities and Convexity.- [5] Moments of inertia of convex regions (1936).- [7] Polar correspondence with respect to a convex region (1937).- [10] Special solutions of certain difference equations (1939).- [11] An inequality for convex bodies (1940).- [12] Discontinuous convex solutions of difference equations (1941).- [17] Extremumproblems with inequalities as subsidiary conditions (1948).- [60] On symmetric matrices whose eigenvalues satisfy linear inequalities (1966).- [65] A note on my paper, “On symmetric matrices whose eigenvalues satisfy linear inequalities” (1968).- [63] On quasi-isometric mappings, I (1968).- [63a] Note on the paper, “On quasi-isometric mappings, I” (1972).- [64] On quasi-isometric mappings, II (1969).- [73] Bounds for deformations in terms of average strains (1972).- [84] A criterion for univalencv brought up to date (1976).- Remarks on [17], [63], [64], and [84].- Commentary on [17].- IX Papers on Functions of Bounded Mean Oscillations.- [48] Rotation and strain (1961).- [49] (With L. Nirenberg) On Functions of bounded mean oscillation (1961).- [54] Quasi-isometric mappings (1964).- [78] Inunctions whose gradient is bounded by reciprocal distance from the boundary of their domain (1974).- Remark on [48].- Commentary on [48], [49], [54], [63], [64], [75], and [51a].- X Miscellaneous.- [1] Über die Vollständigkeit der Relationen von Morse für die Anzahlen kritischer Punkte (1943).- [3] Identitaten zwischen dem Integral einer willktirlüchen Funktion und unendlichen Reihen (1935).- [116] A representation of Stieltjes integrals by conditionally convergent series (1937).- [20] On harmonic vibrations out of phase with the exciting force (1948).- Collected Mathematical Papers ordered chronologically according to the date of original publication.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.