Moschovakis | Notes on Set Theory | E-Book | sack.de
E-Book

E-Book, Englisch, 273 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

Moschovakis Notes on Set Theory


Erscheinungsjahr 2013
ISBN: 978-1-4757-4153-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 273 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-1-4757-4153-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.

Moschovakis Notes on Set Theory jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Equinumerosity.- 3. Paradoxes and axioms.- 4. Are sets all there is?.- 5. The natural numbers.- 6. Fixed points.- 7. Well ordered sets.- 8. Choices.- 9. Choice’s consequences.- 10. Baire space.- 11. Replacement and other axioms.- 12. Ordinal numbers.- A. The real numbers.- Congruences.- Fields.- Ordered fields.- Uniqueness of the rationals.- Existence of the rationals.- Countable, dense, linear orderings.- The archimedean property.- Nested interval property.- Dedekind cuts.- Existence of the real numbers.- Uniqueness of the real numbers.- Problems for Appendix A.- B. Axioms and universes.- Set universes.- Propositions and relativizations.- Rieger universes.- Rieger’s Theorem.- Bisimulations.- The antifounded universe.- Aczel’s Theorem.- Problems for Appendix B.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.