Morgan | The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds | E-Book | sack.de
E-Book

E-Book, Englisch, 130 Seiten

Reihe: Mathematical Notes

Morgan The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds


1. Auflage 2014
ISBN: 978-1-4008-6516-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 130 Seiten

Reihe: Mathematical Notes

ISBN: 978-1-4008-6516-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants.

The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.

Morgan The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1 Introduction 1

2 Clifford Algebras and Spin Groups 5

3 Spin Bundles and the Dirac Operator 23

4 The Seiberg-Witten Moduli Space 55

5 Curvature Identities and Bounds 69

6 The Seiberg-Witten Invariant 87

7 Invariants of Kahler Surfaces 109

Bibliography 127


John W. Morgan is Professor of Mathematics at Columbia University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.