Mooney | Monte Carlo Simulation | Buch | 978-0-8039-5943-9 | sack.de

Buch, Englisch, Band 116, 112 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 152 g

Reihe: Quantitative Applications in the Social Sciences

Mooney

Monte Carlo Simulation


1. Auflage 1997
ISBN: 978-0-8039-5943-9
Verlag: Sage Publications

Buch, Englisch, Band 116, 112 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 152 g

Reihe: Quantitative Applications in the Social Sciences

ISBN: 978-0-8039-5943-9
Verlag: Sage Publications


Monte Carlo Simulation is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind Monte Carlo Simulation and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

Monte Carlo Simulation will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.

will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.

Mooney Monte Carlo Simulation jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction
Generating Individual Samples from a Pseudo-Population
Using the Pseudo-Population in Monte Carlo Simulation
Using Monte Carlo Simulation in the Social Sciences
Conclusion


Mooney, Christopher Z.
Christopher Z. Mooney is a professor of political studies with a joint appointment in the Institute of Government and Public Affairs.

Mooney studies U.S. state politics and policy, with special focus on legislative decision making, morality policy, and legislative term limits.

He is the founding editor of State Politics and Policy Quarterly, the premier academic journal in its field and has published dozens of articles and books, including Lobbying Illinois - How You Can Make a Difference in Public Policy.

Prior to arriving at UIS in 1999, he taught at West Virginia University and the University of Essex in the United Kingdom



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.