Moody | The Mathematics of Long-Range Aperiodic Order | Buch | 978-90-481-4832-5 | sack.de

Buch, Englisch, Band 489, 556 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 855 g

Reihe: Nato Science Series C:

Moody

The Mathematics of Long-Range Aperiodic Order

Buch, Englisch, Band 489, 556 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 855 g

Reihe: Nato Science Series C:

ISBN: 978-90-481-4832-5
Verlag: Springer Netherlands


THEOREM: Rotational symmetries of order greater than six, and also five-fold rotational symmetry, are impossible for a periodic pattern in the plane or in three-dimensional space. The discovery of quasicrystals shattered this fundamental 'law', not by showing it to be logically false but by showing that periodicity was not synonymous with long-range order, if by 'long-range order' we mean whatever order is necessary for a crystal to produce a diffraction pat­ tern with sharp bright spots. It suggested that we may not know what 'long-range order' means, nor what a 'crystal' is, nor how 'symmetry' should be defined. Since 1984, solid state science has been under going a veritable K uhnian revolution. -M. SENECHAL, Quasicrystals and Geometry Between total order and total disorder He the vast majority of physical structures and processes that we see around us in the natural world. On the whole our mathematics is well developed for describing the totally ordered or totally disordered worlds. But in reality the two are rarely separated and the mathematical tools required to investigate these in-between states in depth are in their infancy.
Moody The Mathematics of Long-Range Aperiodic Order jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Knotted Tilings.- Solution of the Coincidence Problem in Dimensions d ? 4.- Self-Similar Tilings and Patterns Described by Mappings.- Delone Graphs; Some Species and Local Rules.- What is the Long Range Order in the Kolakoski Sequence?.- Topics in Aperiodicity: Penrose Tiling Growth and Quantum Circuits.- The Diffraction Pattern of Self-Similar Tilings.- Pisot-Cyclotomic Integers for Quasilattices.- Aperiodic Ising Models.- Diffraction by Aperiodic Structures.- Aperiodic Schrödinger Operators.- Symmetry Concepts for Quasicrystals and Non-commutative Crystallography.- Local Rules for Quasiperiodic Tilings.- Almost-Periodic Sequences and Pseudo-Random Sequences.- The Symmetry of Crystals.- Meyer Sets and Their Duals.- Non-crystallographic Root Systems and Quasicrystals.- Remarks on Tiling: Details of a (1 + ? + ?2)-Aperiodic Set.- Aperiodic Tilings, Ergodic Theory, and Rotations.- A Critique of the Projection Method.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.