Buch, Englisch, 222 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 464 g
Reihe: Business & economics
Buch, Englisch, 222 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 464 g
Reihe: Business & economics
ISBN: 978-1-5015-1464-7
Verlag: De Gruyter
Most economists agree that AI is a general purpose technology (GPT) like the steam engine, electricity, and the computer. AI will drive innovation in all sectors of the economy for the foreseeable future. Practical AI for Business Leaders, Product Managers, and Entrepreneurs is a technical guidebook for the business leader or anyone responsible for leading AI-related initiatives in their organization. The book can also be used as a foundation to explore the ethical implications of AI. Authors Alfred Essa and Shirin Mojarad provide a gentle introduction to foundational topics in AI. Each topic is framed as a triad: concept, theory, and practice. The concept chapters develop the intuition, culminating in a practical case study. The theory chapters reveal the underlying technical machinery. The practice chapters provide code in Python to implement the models discussed in the case study. With this book, readers will learn: - The technical foundations of machine learning and deep learning
- How to apply the core technical concepts to solve business problems
- The different methods used to evaluate AI models
- How to understand model development as a tradeoff between accuracy and generalization
- How to represent the computational aspects of AI using vectors and matrices
- How to express the models in Python by using machine learning libraries such as scikit-learn, statsmodels, and keras
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
Introduction What is AI and why it is at the center of major business transformation? How is it related to machine learning? What is deep learning, and how is it related to ML? Why is it important? How the book is organized Who is the audience?
Section 1: Machine Learning Chapter 1.1, introduction, machine learning, different types of machine learning Chapter 1.2, Machine Learning Technical Overview Chapter 1.3, Hands-On Machine Learning with Scikit Learn Chapter 1.4, Advanced Topics/flavors of Machine learning Appendix: mathematical interlude
Section 2: Deep Learning Chapter 2.1, introduction (what is it, why is it important) Chapter 2.2, Deep Learning Technical Overview Chapter 2.3, Hands-On Deep Learning with Keras Chapter 2.4, Advanced Topics/flavors of deep learning Appendix: mathematical interlude
Section 3: Putting AI into Practice: Innovation Framework Chapter 3.1: Diffusion and Dynamics of Innovation Chapter 3.2: Managing an Innovation Portfolio