Mohtaj | Transfer Learning for Harmful Content Detection | E-Book | sack.de
E-Book

E-Book, Englisch, 105 Seiten

Reihe: Engineering (R0)

Mohtaj Transfer Learning for Harmful Content Detection


1. Auflage 2025
ISBN: 978-3-032-00850-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 105 Seiten

Reihe: Engineering (R0)

ISBN: 978-3-032-00850-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides an in-depth exploration of the effectiveness of transfer learning approaches in detecting deceptive content (i.e., fake news) and inappropriate content (i.e., hate speech). The author first addresses the issue of insufficient labeled data by reusing knowledge gained from other natural language processing (NLP) tasks, such as language modeling. He goes on to observe the connection between harmful content and emotional signals in text after emotional cues were integrated into the classification models to evaluate their impact on model performance. Additionally, since pre-processing plays an essential role in NLP tasks by enriching raw data—especially critical for tasks with limited data, such as fake news detection—the book analyzes various pre-processing strategies in a transfer learning context to enhance the detection of fake stories online. Optimal settings for transferring knowledge from pre-trained models across subtasks, including claim extraction and check-worthiness assessment, are also investigated.  The author shows that the findings indicate that incorporating these features into check-worthy claim models can improve overall model performance, though integrating emotional signals did not significantly affect classifier results. Finally, the experiments highlight the importance of pre-processing for enhancing input text, particularly in social media contexts where content is often ambiguous and lacks context, leading to notable performance improvements.

Mohtaj Transfer Learning for Harmful Content Detection jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Background.- The Impact of Pre-processing on Fake News Detection.- Transfer Learning for Harmful Content Detection.- Sentiment Analysis and Fake News Detection.- Outlook.- Conclusion.


Salar Mohtaj is a Research Scientist at the German Research Center for Artificial Intelligence (DFKI) and a postcoctoral researcher in the Speech & Language Technology group. He completed his PhD at Technische Universität Berlin, focusing on fake news and hate speech detection, and hold a Master’s degree in Information Technology from Tehran Polytechnic (Amirkabir University of Technology), specializing in natural language processing. Previously, he led the development of a Persian plagiarism detection system at ICT Research Institute of Tehran. With over 40 publications in journals and conferences, Salar has made contributions to different natural language processing tasks, notably publishing research and creating datasets across various tasks—from plagiarism detection and German text readability assessment to fake news detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.