Mohan B. / Srinikethan / Meikap | Materials, Energy and Environment Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 307 Seiten, eBook

Mohan B. / Srinikethan / Meikap Materials, Energy and Environment Engineering

Select Proceedings of ICACE 2015
1. Auflage 2017
ISBN: 978-981-10-2675-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Select Proceedings of ICACE 2015

E-Book, Englisch, 307 Seiten, eBook

ISBN: 978-981-10-2675-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This edited volume comprises the proceedings of ICACE-2015. In the recent past Chemical Engineering as a discipline has been diversifying into several frontier areas and this volume addresses the advances in core Chemical Engineering as well as allied fields. The contents of this volume focus on energy and environmental applications of chemical engineering research and on materials science aspects of chemical engineering. This book will be useful to researchers, students, and professionals, particularly those working on interdisciplinary applications of Chemical Engineering problems.
Mohan B. / Srinikethan / Meikap Materials, Energy and Environment Engineering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;5
2;Contents;8
3;About the Editors;12
4;Materials and Nanomaterials;13
5;1 Characterization of Citrus Peels for Bioethanol Production;14
5.1;1 Introduction;14
5.2;2 Materials and Methods;15
5.2.1;2.1 Materials;15
5.2.2;2.2 Experimental;16
5.3;3 Results and Discussion;16
5.3.1;3.1 Proximate and Ultimate Analysis;16
5.3.2;3.2 FTIR Spectroscopy;17
5.3.3;3.3 Thermal Analysis;18
5.4;4 Conclusion;22
5.5;References;22
6;2 Study of Mechanical Properties and Microstructure of Aluminium Alloy Reinforced with TiB2, by in Situ Technique;24
6.1;1 Introduction;24
6.2;2 Materials and Methods;25
6.2.1;2.1 Composition of Alloy;25
6.2.2;2.2 Preparation of Composites by Mixed Salt Route Technique;26
6.2.3;2.3 Sample Preparation for Optical Microscopy and SEM;26
6.2.4;2.4 Micro Structural Characterisation;27
6.2.5;2.5 Wear Testing;27
6.2.6;2.6 Hardness Testing;27
6.2.7;2.7 Tensile Testing;27
6.3;3 Results and Discussion;28
6.3.1;3.1 Microstructure of AA7175-TiB2 Composite;28
6.3.2;3.2 Wear Behaviour;29
6.3.3;3.3 Hardness of Composites;31
6.3.4;3.4 Tensile Behaviour;31
6.4;4 Conclusions;33
6.5;References;34
7;3 Development of Bio-Based Epoxide from Plant Oil;35
7.1;1 Introduction;35
7.2;2 Experimental Details;36
7.2.1;2.1 Materials;36
7.2.2;2.2 Experimental Procedure;37
7.2.3;2.3 Chemical and Instrumental Analysis;37
7.3;3 Results and Discussion;38
7.3.1;3.1 Epoxidation Reactions;38
7.3.2;3.2 Comparison of Different Acid Catalysts on Epoxide Yield;38
7.3.3;3.3 Comparison of Different Carboxylic Acids on Epoxide Yield;39
7.3.4;3.4 FTIR Analysis of Nahor Oil and Products;40
7.4;4 Conclusion;41
7.5;Acknowledgments;41
7.6;References;41
8;4 Experimental and FEM Analysis on the Mechanical Properties of Al-8011 Alloy Reinforced with Fly-Ash and E-Glass Fibers;43
8.1;1 Introduction;43
8.2;2 Experimental;44
8.2.1;2.1 Raw Materials and Their Properties;44
8.2.2;2.2 Fabrication of Composites;45
8.2.3;2.3 Brinell Hardness Test;45
8.2.4;2.4 Tensile and Compression Tests;45
8.3;3 Results and Discussions;46
8.3.1;3.1 Hardness;46
8.3.2;3.2 Tensile Strength;47
8.3.3;3.3 Compression Strength;48
8.4;4 FEM Approach;49
8.5;5 Scanning Electron Microscope Analysis;51
8.6;6 Conclusions;51
8.7;References;52
9;5 Effects of Single, Double, Triple and Quadruple Window Glazing of Various Glass Materials on Heat Gain in Green Energy Buildings;54
9.1;1 Introduction;54
9.2;2 Experimental Methodology;54
9.3;3 Thermal Analysis;56
9.4;4 Results and Discussions;56
9.4.1;4.1 Heat Gain in Buildings of Hot and Dry (Ahmedabad) and Temperate (Bangalore) Climatic Regions;56
9.4.2;4.2 Heat Gain in Buildings of Warm and Humid (Bombay) and Composite (New-Delhi) Climatic Regions;58
9.5;5 Conclusion;59
9.6;References;59
10;6 Synthesis of Ruthenium Nanoparticles by Microwave Assisted Solvothermal Technique;60
10.1;1 Introduction;60
10.2;2 Experimental Procedures;61
10.2.1;2.1 Materials;61
10.2.2;2.2 Synthesis of Ru Nanoparticles in Pressurized Vial;61
10.2.3;2.3 Characterisation of Ru Nanoparticles;61
10.3;3 Result and Discussion;62
10.3.1;3.1 Formation of Ru Nanoparticles;62
10.3.2;3.2 Effect of PVP/RuCl3 Molar Ratio (MR) on Particle Size;62
10.3.3;3.3 Effect of MWI Power on Average Size of Ru Nanoparticles;63
10.3.4;3.4 Stability of Ru Nanoparticle and TEM Analysis;65
10.4;4 Conclusion;65
10.5;References;66
11;7 Sonochemical Synthesis of Poly (Styrene-co-Methylmethacrylate)-HNT’s Nanocomposites by Mini-emulsion Polymerisation;67
11.1;1 Introduction;67
11.2;2 Research Methodology;68
11.2.1;2.1 Materials;68
11.2.2;2.2 Mini-emulsion Copolymerization of Poly(Styrene-co-Methylmethacrylate)-HNT’s Nanocomposites;69
11.2.3;2.3 Polymerization of (Styrene-co-Methylmethacrylate)-HNT’s;69
11.3;3 Characterisation of Nanocomposites;70
11.4;4 Results and Discussions;70
11.4.1;4.1 Effect of Sonication and Clay Loading on Structure of Nanocomposites;70
11.4.2;4.2 Studies on Morphology of Nanocomposites;72
11.4.3;4.3 Effect of HNTs Inclusion on Polymer Structure;73
11.4.4;4.4 Effect of Clay Loading on Thermal Stability of Nanocomposites;74
11.5;5 Summary/Conclusion;74
11.6;References;75
12;8 A Novel Single Step Sonochemical Synthesis of Micro-Nano Size Palladium-Metal Oxides;76
12.1;1 Introduction;76
12.2;2 Experimental;77
12.3;3 Results and Discussions;78
12.3.1;3.1 X-Ray Diffraction and Size Distribution Analysis;78
12.3.2;3.2 Microscopy and Elemental Analysis;79
12.4;4 Conclusion;81
12.5;References;81
13;9 A Novel Single Step Ultrasound Assisted Synthesis of Nano Size Metal Oxides Metal Carbides and Metal Nitrides;82
13.1;1 Introduction;82
13.2;2 Experimental;83
13.3;3 Results and Discussions;85
13.3.1;3.1 X-ray Diffraction;85
13.3.2;3.2 BET Surface Area Analysis;87
13.3.3;3.3 Size Distribution Analysis;87
13.3.4;3.4 Scanning Electron Microscopy (SEM) Analysis;88
13.4;4 Conclusion;88
13.5;References;89
14;Biosorption and Degradation;90
15;10 Denitrification Under Aerobic Condition in Draft Tube Spouted Bed Reactor;91
15.1;1 Introduction;91
15.2;2 Materials and Methodology;92
15.2.1;2.1 Growth Media Composition;92
15.2.2;2.2 Analytical Method;92
15.3;3 Experimentation;93
15.3.1;3.1 Experimental Procedure;93
15.4;4 Results and Discussion;94
15.4.1;4.1 Effect of Influent Nitrate Concentrations and Dilution Rates on Time to Attain Steady State;94
15.4.2;4.2 Effect of Nitrate Loading Rate on Removal Rate at Different GAC Loading;95
15.4.3;4.3 Effect of Ratio of Nitrate Loading Rate to Attached Biomass Weight on Percentage Nitrate Removal;96
15.5;5 Conclusion;97
15.6;Acknowledgments;98
15.7;References;98
16;11 Feasibility of Anaerobic Ammonium Oxidation in the Presence of Bicarbonate;99
16.1;1 Introduction;99
16.2;2 Materials and Methods;100
16.2.1;2.1 Nutrient Media for Anaerobic Ammonia Oxidation;100
16.2.2;2.2 Biomass;100
16.2.3;2.3 Batch Reactor Studies;100
16.2.4;2.4 Kinetic Studies;101
16.2.5;2.5 Analytical Techniques;101
16.3;3 Results and Discussion;101
16.3.1;3.1 Feasibility of Anaerobic Ammonium Oxidation Using HCO3? as Electron Acceptor;101
16.3.2;3.2 Kinetic Studies;103
16.4;4 Conclusions;104
16.5;References;105
17;12 Denitration of High Nitrate Bearing Alkaline Waste Using Two Stage Chemical and Biological Process;106
17.1;1 Introduction;106
17.2;2 Materials and Method;107
17.2.1;2.1 Chemical Denitration;107
17.2.2;2.2 Biological Denitrification;108
17.3;3 Result and Discussion;109
17.3.1;3.1 Chemical Denitration;109
17.3.2;3.2 Biological Denitrification;112
17.4;4 Conclusion;114
17.5;References;114
18;13 Optimization Study of Cadmium Biosorption on Sea Urchin Test: Application of Response Surface Methodology;116
18.1;1 Introduction;116
18.2;2 Materials and Methods;117
18.2.1;2.1 Biosorbent Preparation;117
18.2.2;2.2 Preparation Synthetic Cd(II) Stock Solution;117
18.2.3;2.3 Biosorption Experiments (Batch Mode);118
18.2.4;2.4 Design Variables for Biosorption Study;118
18.2.5;2.5 Process Optimization;118
18.3;3 Results and Discussion;120
18.3.1;3.1 Competency of the Model for Cd(II) Removal;120
18.3.2;3.2 Regression Analysis;121
18.3.3;3.3 ANOVA for Response Surface Quadratic Model;122
18.3.4;3.4 Optimization and Confirmation;123
18.4;4 Conclusion;123
18.5;References;123
19;14 Optimization of Nickel (II) and Cadmium (II) Biosorption on Brewery Sludge Using Response Surface Methodology;125
19.1;1 Introduction;125
19.2;2 Materials and Methods;126
19.3;3 Results and Discussion;126
19.4;4 Conclusion;130
19.5;Acknowledgments;130
19.6;References;130
20;15 Biosorption of Copper from Wastewater Using Spirulina Species;132
20.1;1 Introduction;132
20.2;2 Materials and Methods;133
20.3;3 Results and Discussions;133
20.3.1;3.1 Effect of Contact Time (min);133
20.3.2;3.2 Effect of Biosorbent Dosage;134
20.3.3;3.3 Effect of pH;134
20.3.4;3.4 Effect of Initial Cu Ion Concentration;135
20.3.5;3.5 Adsorption Isotherm Study of Cu Metal;136
20.3.6;3.6 Column Studies;137
20.3.7;3.7 Experiment on Industrial Sample;137
20.4;4 Summary/Conclusion;138
20.5;References;138
21;16 A Study on Simultaneous Photocatalytic Removal of Hexavalent Chromium and Pharmaceutical Contaminant from Aqueous Phase;139
21.1;1 Introduction;139
21.2;2 Materials and Methods;140
21.3;3 Results and Discussions;142
21.3.1;3.1 Characterization of the Catalyst;142
21.3.2;3.2 Reduction of Hexavalent Chromium;143
21.4;4 Conclusions;145
21.5;Acknowledgments;145
21.6;References;145
22;17 Effect of Precursor Salt Solution Concentration on the Size of Silver Nanoparticles Synthesized Using Aqueous Leaf Extracts of T. catappa and T. grandis Linn f.—A Green Synthesis Route;147
22.1;1 Introduction;147
22.2;2 Materials and Methods;148
22.2.1;2.1 Collection of the Plant Material;148
22.2.2;2.2 Preparation of the Aqueous Extracts of T. catappa (ALE) and T.Grandis Linn f (TLE) Leaves;148
22.2.3;2.3 Biosynthesis of AgNPs;148
22.3;3 Results and Discussion;149
22.4;4 Conclusion;152
22.5;References;152
23;18 Impact of Hydrochloric Acid on Phase Formation of Titanium Dioxide Nanoparticles;154
23.1;1 Introduction;154
23.2;2 Materials and Methods;155
23.3;3 Results and Discussion;156
23.4;4 Conclusions;159
23.5;References;159
24;19 Synthesis and Characterization of Mg Doped CuO Nano Particles by Quick Precipitation Method;160
24.1;1 Introduction;160
24.2;2 Materials and Method;161
24.3;3 Results and Discussion;161
24.3.1;3.1 XRD Analysis;161
24.3.2;3.2 FESEM and EDX Analysis;161
24.3.3;3.3 UV-Vis Analysis;162
24.4;4 Conclusion;165
24.5;References;165
25;20 Studies on Process Parameters of Continuous Production of Nickel Nanoparticles Using Spiral Microreactor;167
25.1;1 Introduction;167
25.2;2 Experimental;168
25.2.1;2.1 Chemicals;168
25.2.2;2.2 Experimental Setup and Synthesis;168
25.3;3 Result and Discussion;169
25.3.1;3.1 Effect of Temperature;169
25.3.2;3.2 Effect of Surfactant;171
25.3.3;3.3 Effect of N2H4/Ni2+ Molar Ratio;172
25.3.4;3.4 SEM Analysis: Nanoparticles Structure;172
25.4;4 Conclusion;173
25.5;References;173
26;21 Optimization of Cassava Pulp Pretreatment by Alkaline Hydrogen Peroxide Using Response Surface Methodology for Bioethanol Production;175
26.1;1 Introduction;175
26.2;2 Materials and Methods;176
26.2.1;2.1 Materials;176
26.2.2;2.2 Pretreatment;176
26.2.3;2.3 Enzyme Hydrolysis;176
26.2.4;2.4 Fermentation;177
26.2.5;2.5 Analytical Methods;177
26.2.6;2.6 Experimental Design;177
26.3;3 Results and Discussion;178
26.3.1;3.1 Effect of Solid to Liquid Ratio (SLR);178
26.3.2;3.2 Model Fitting;178
26.3.3;3.3 Effect of Process Variables on Reducing Sugar Yield;181
26.3.4;3.4 Confirmation Experiments;182
26.3.5;3.5 Spectral Characterization;182
26.3.6;3.6 Fermentation;183
26.4;4 Conclusions;183
26.5;References;184
27;22 Production of Biodiesel from Neem Oil Feedstock Using Bifunctional Catalyst;186
27.1;1 Introduction;186
27.2;2 Materials and Methods;188
27.2.1;2.1 Preparation of Catalyst;188
27.2.2;2.2 Method;188
27.2.3;2.3 Catalyst Recovery;190
27.3;3 Results and Discussion;190
27.3.1;3.1 Effect of Bifunctional Catalyst;190
27.3.2;3.2 Effect of Process Time;191
27.3.3;3.3 Effect of Catalyst;191
27.3.4;3.4 Effect of Ethanol to Oil Ratio;192
27.4;4 Conclusion;193
27.5;References;193
28;23 Influence of Feed Vapour Fraction on the Performance of Direct Methanol Fuel Cell;195
28.1;1 Introduction;195
28.2;2 Experimental Set Up;196
28.3;3 Results and Discussion;197
28.3.1;3.1 Effect of Feed Vapor Fraction;197
28.3.2;3.2 Effect of Methanol Concentration;197
28.3.3;3.3 Comparison with Neat Methanol;199
28.4;4 Conclusion;201
28.5;References;201
29;24 Electrocatalytic Borohydride Oxidation by Supported Tungsten Oxide Nanoclusters Towards Direct Borohydride Fuel Cells;203
29.1;1 Introduction;203
29.2;2 Experimental;205
29.3;3 Results and Discussion;205
29.4;4 Conclusion;207
29.5;References;208
30;25 Optimal Off-Grid Hybrid Options for Power Generation in Remote Indian Villages: HOMER Application and Analysis;209
30.1;1 Introduction;209
30.2;2 Methodology and Data Used;211
30.3;3 HOMER Analysis;213
30.4;4 Results and Discussion;213
30.4.1;4.1 Optimal Hybrid Energy System Architecture;213
30.5;5 Conclusions;216
30.6;References;216
30.7;Websites;216
31;26 Experimental Studies on Electricity Production and Removal of Hexavalent Chromium in Microbial Fuel Cell;217
31.1;1 Introduction;217
31.2;2 Materials and Methods;218
31.2.1;2.1 MFC Construction;218
31.2.2;2.2 MFC Operation;218
31.2.3;2.3 Measurement and Analysis;219
31.3;3 Results;220
31.3.1;3.1 Effect of PH;220
31.3.2;3.2 Effect of Concentration;221
31.3.3;3.3 Chromium Reduction;222
31.4;4 Discussion;222
31.5;5 Conclusion;224
31.6;References;224
32;27 Experimental Studies on Performance of Single Cell PEM Fuel Cell with Various Operating Parameters;225
32.1;1 Introduction;225
32.2;2 Experimental;227
32.2.1;2.1 Preparation of Catalyst Ink and Fabrication of MEA;227
32.2.2;2.2 Fuel Cell Tests;227
32.3;3 Results and Discussion;228
32.3.1;3.1 Effect of Operating Temperature;228
32.3.2;3.2 Effect of Operating Pressure;229
32.3.3;3.3 Effect of Anode Humidification Temperature;229
32.3.4;3.4 Effect of Cathode Humidification Temperature;230
32.3.5;3.5 Effect of Anode Gas Flow Rate (H2);231
32.3.6;3.6 Effect of Cathode Gas Flow Rate (O2);231
32.4;4 Conclusions;232
32.5;Acknowledgments;233
32.6;References;233
33;28 A Study on Utilization of Latex Processing Effluent for Treatment and Energy Recovery in Microbial Fuel Cell;234
33.1;1 Introduction;234
33.2;2 Materials and Methods;235
33.3;3 Results and Discussion;237
33.3.1;3.1 Contaminant Removal;237
33.3.2;3.2 Energy Recovery;238
33.4;4 Conclusions;240
33.5;Acknowledgments;240
33.6;References;240
34;29 Effect of Traditionally Synthesized Carbon Nano Particles as Bio-Fuel Blend on the Engine Performance;242
34.1;1 Introduction;242
34.2;2 Materials and Methodology;243
34.2.1;2.1 Materials;243
34.2.2;2.2 Traditional Method of Synthesizing Carbon Nanoparticles;243
34.2.3;2.3 Materials Characterization of Carbon Nanoparticle;243
34.2.4;2.4 Blending of Carbon Nanoparticles with Diesel;243
34.2.5;2.5 Experimental Setup;244
34.3;3 Results and Discussion;244
34.3.1;3.1 Characterization of Carbon Nanoparticle;244
34.3.2;3.2 Characterization Variation of Brake Thermal Efficiency (BTE);245
34.3.3;3.3 Effect of Smoke Capacity;246
34.3.4;3.4 Effect of Smoke Capacity;246
34.3.5;3.5 Variation of NOx Emission;247
34.4;4 Conclusion;247
34.5;Acknowledgments;248
34.6;References;248
35;30 Optimization of Chitosan Nanoparticles Synthesis and Its Applications in Fatty Acid Absorption;249
35.1;1 Introduction;249
35.2;2 Materials and Methods;250
35.2.1;2.1 Preparation of Chitosan Nanoparticles;250
35.2.2;2.2 Testing of Size of Chitosan Nanoparticles Using Zeta Analyzer;250
35.2.3;2.3 Testing for Fat Absorption of Chitosan Nanoparticles;250
35.3;3 Results and Discussion;251
35.4;4 Conclusion;252
35.5;References;252
36;31 Biosynthesis of Silver Nanoparticles Using Turmeric Extract and Evaluation of Its Anti-Bacterial Activity and Catalytic Reduction of Methylene Blue;253
36.1;1 Introduction;253
36.2;2 Methodology;254
36.2.1;2.1 Preparation of Extract;254
36.2.2;2.2 Synthesis of TUAgnps;254
36.2.3;2.3 Characterization of TUAgnps;254
36.2.3.1;2.3.1 UV-Visible Spectroscopic Characterization of TUAgnps;254
36.2.3.2;2.3.2 FT-IR Spectroscopic Studies;254
36.2.3.3;2.3.3 Particle Size Distribution and Zeta Potential;254
36.2.3.4;2.3.4 SEM and EDX Analysis;255
36.2.4;2.4 Effect of Biosynthesized TUAgnps on the Methylene Blue Reduction and Its Evaluation;255
36.2.5;2.5 Immobilization of TUAgnps on Cloth and Disk Diffusion Studies;255
36.3;3 Results;256
36.3.1;3.1 Characterization of TUAgnps;256
36.3.1.1;3.1.1 UV-Visible Spectrophotometer;256
36.3.1.2;3.1.2 FT-IR Spectroscopic Studies;256
36.3.1.3;3.1.3 Particle Size Distribution and Zeta Potential;256
36.3.1.4;3.1.4 SEM and EDX Analysis;258
36.3.2;3.2 Methylene Blue Dye Reduction by TUAgnps and Its Catalytic Activity;258
36.3.3;3.3 Antimicrobial Activity Studies;260
36.4;4 Conclusions;260
36.5;References;261
37;32 Comparison of Metal Oxide Nanomaterials: Humidity Sensor Applications;262
37.1;1 Introduction;262
37.2;2 Experimental Details;263
37.3;3 Results and Discussions;263
37.3.1;3.1 X-Ray Diffractometer;263
37.3.2;3.2 Particle Size Analyser;265
37.4;4 Humidity Sensor Application;265
37.5;5 Conclusion;269
37.6;Acknowledgments;269
37.7;References;269
38;Pollution Control;271
39;33 Assessment of Ambient Air Quality Parameters in Various Industries of Uttarakhand, India;272
39.1;1 Introduction;272
39.2;2 Materials and Methods;274
39.2.1;2.1 Identification of Industries for Air Quality Monitoring;274
39.2.2;2.2 Survey and Analysis of Various Industries;274
39.2.3;2.3 Data Collection/Sampling;274
39.3;3 Results and Discussion;275
39.4;4 Conclusion;281
39.5;Acknowledgments;282
39.6;References;282
40;34 Urban Air Pollution Impact and Strategic Plans—A Case Study of a Tier-II City;284
40.1;1 Introduction;284
40.2;2 Methodology;286
40.3;3 Results and Discussion;286
40.4;4 Conclusion;289
40.5;Acknowledgments;289
40.6;References;289
41;35 Optimization of Engineering and Process Parameters for Electro-Chemical Treatment of Textile Wastewater;291
41.1;1 Introduction;291
41.2;2 Materials and Method;292
41.2.1;2.1 Materials Used;292
41.2.2;2.2 Apparatus Design;292
41.2.3;2.3 Experimental Procedure;293
41.2.4;2.4 Analytical Method;293
41.2.5;2.5 Data Analysis;294
41.3;3 Results and Discussion;294
41.4;4 Conclusion;299
41.5;Acknowledgments;299
41.6;References;299
42;36 Secondary Treatment of Dairy Effluents with Trickle Bed;300
42.1;1 Introduction;300
42.2;2 Materials and Methods;301
42.3;3 Results and Discussions;303
42.4;4 Conclusion;306
42.5;References;307


Dr. Raj Mohan B is working as  Associate Professor in Department of Chemical Engineering, National Institute of Technology Karnataka. He has more than 50 research publications in the field of Air Pollution: Particulate Matter analysis, Control and Abatement and CO2 sequestration, Bioremediation and Separation Technology, Wastewater Treatment and Quality monitoring, Biosynthesis of nanoparticles, reduction of antioxidants and antimicrobial compounds. Dr. G. Srinikethan , is working in Department of Chemical Engineering, National Institute of Technology Karnataka . He has more than 40 research publications. His research fields are Transfer Operations, Industrial Pollution Control, Hydrodynamics, Environmental Biotechnology. Dr. Bhim Charan Meikap , is working at Chemical Engineering, Indian Institute of Technology Kharagpur . He has more than 100 publications  in reputed journals. He is working on the research fieldslike, Air Pollution: Particulate Matter analysis, Control and Abatement and CO2 sequestration, Bioremediation and Separation Technology, Wastewater Treatment and Quality monitoring.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.