E-Book, Englisch, 307 Seiten, eBook
Mohan B. / Srinikethan / Meikap Materials, Energy and Environment Engineering
1. Auflage 2017
ISBN: 978-981-10-2675-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Select Proceedings of ICACE 2015
E-Book, Englisch, 307 Seiten, eBook
ISBN: 978-981-10-2675-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;8
3;About the Editors;12
4;Materials and Nanomaterials;13
5;1 Characterization of Citrus Peels for Bioethanol Production;14
5.1;1 Introduction;14
5.2;2 Materials and Methods;15
5.2.1;2.1 Materials;15
5.2.2;2.2 Experimental;16
5.3;3 Results and Discussion;16
5.3.1;3.1 Proximate and Ultimate Analysis;16
5.3.2;3.2 FTIR Spectroscopy;17
5.3.3;3.3 Thermal Analysis;18
5.4;4 Conclusion;22
5.5;References;22
6;2 Study of Mechanical Properties and Microstructure of Aluminium Alloy Reinforced with TiB2, by in Situ Technique;24
6.1;1 Introduction;24
6.2;2 Materials and Methods;25
6.2.1;2.1 Composition of Alloy;25
6.2.2;2.2 Preparation of Composites by Mixed Salt Route Technique;26
6.2.3;2.3 Sample Preparation for Optical Microscopy and SEM;26
6.2.4;2.4 Micro Structural Characterisation;27
6.2.5;2.5 Wear Testing;27
6.2.6;2.6 Hardness Testing;27
6.2.7;2.7 Tensile Testing;27
6.3;3 Results and Discussion;28
6.3.1;3.1 Microstructure of AA7175-TiB2 Composite;28
6.3.2;3.2 Wear Behaviour;29
6.3.3;3.3 Hardness of Composites;31
6.3.4;3.4 Tensile Behaviour;31
6.4;4 Conclusions;33
6.5;References;34
7;3 Development of Bio-Based Epoxide from Plant Oil;35
7.1;1 Introduction;35
7.2;2 Experimental Details;36
7.2.1;2.1 Materials;36
7.2.2;2.2 Experimental Procedure;37
7.2.3;2.3 Chemical and Instrumental Analysis;37
7.3;3 Results and Discussion;38
7.3.1;3.1 Epoxidation Reactions;38
7.3.2;3.2 Comparison of Different Acid Catalysts on Epoxide Yield;38
7.3.3;3.3 Comparison of Different Carboxylic Acids on Epoxide Yield;39
7.3.4;3.4 FTIR Analysis of Nahor Oil and Products;40
7.4;4 Conclusion;41
7.5;Acknowledgments;41
7.6;References;41
8;4 Experimental and FEM Analysis on the Mechanical Properties of Al-8011 Alloy Reinforced with Fly-Ash and E-Glass Fibers;43
8.1;1 Introduction;43
8.2;2 Experimental;44
8.2.1;2.1 Raw Materials and Their Properties;44
8.2.2;2.2 Fabrication of Composites;45
8.2.3;2.3 Brinell Hardness Test;45
8.2.4;2.4 Tensile and Compression Tests;45
8.3;3 Results and Discussions;46
8.3.1;3.1 Hardness;46
8.3.2;3.2 Tensile Strength;47
8.3.3;3.3 Compression Strength;48
8.4;4 FEM Approach;49
8.5;5 Scanning Electron Microscope Analysis;51
8.6;6 Conclusions;51
8.7;References;52
9;5 Effects of Single, Double, Triple and Quadruple Window Glazing of Various Glass Materials on Heat Gain in Green Energy Buildings;54
9.1;1 Introduction;54
9.2;2 Experimental Methodology;54
9.3;3 Thermal Analysis;56
9.4;4 Results and Discussions;56
9.4.1;4.1 Heat Gain in Buildings of Hot and Dry (Ahmedabad) and Temperate (Bangalore) Climatic Regions;56
9.4.2;4.2 Heat Gain in Buildings of Warm and Humid (Bombay) and Composite (New-Delhi) Climatic Regions;58
9.5;5 Conclusion;59
9.6;References;59
10;6 Synthesis of Ruthenium Nanoparticles by Microwave Assisted Solvothermal Technique;60
10.1;1 Introduction;60
10.2;2 Experimental Procedures;61
10.2.1;2.1 Materials;61
10.2.2;2.2 Synthesis of Ru Nanoparticles in Pressurized Vial;61
10.2.3;2.3 Characterisation of Ru Nanoparticles;61
10.3;3 Result and Discussion;62
10.3.1;3.1 Formation of Ru Nanoparticles;62
10.3.2;3.2 Effect of PVP/RuCl3 Molar Ratio (MR) on Particle Size;62
10.3.3;3.3 Effect of MWI Power on Average Size of Ru Nanoparticles;63
10.3.4;3.4 Stability of Ru Nanoparticle and TEM Analysis;65
10.4;4 Conclusion;65
10.5;References;66
11;7 Sonochemical Synthesis of Poly (Styrene-co-Methylmethacrylate)-HNT’s Nanocomposites by Mini-emulsion Polymerisation;67
11.1;1 Introduction;67
11.2;2 Research Methodology;68
11.2.1;2.1 Materials;68
11.2.2;2.2 Mini-emulsion Copolymerization of Poly(Styrene-co-Methylmethacrylate)-HNT’s Nanocomposites;69
11.2.3;2.3 Polymerization of (Styrene-co-Methylmethacrylate)-HNT’s;69
11.3;3 Characterisation of Nanocomposites;70
11.4;4 Results and Discussions;70
11.4.1;4.1 Effect of Sonication and Clay Loading on Structure of Nanocomposites;70
11.4.2;4.2 Studies on Morphology of Nanocomposites;72
11.4.3;4.3 Effect of HNTs Inclusion on Polymer Structure;73
11.4.4;4.4 Effect of Clay Loading on Thermal Stability of Nanocomposites;74
11.5;5 Summary/Conclusion;74
11.6;References;75
12;8 A Novel Single Step Sonochemical Synthesis of Micro-Nano Size Palladium-Metal Oxides;76
12.1;1 Introduction;76
12.2;2 Experimental;77
12.3;3 Results and Discussions;78
12.3.1;3.1 X-Ray Diffraction and Size Distribution Analysis;78
12.3.2;3.2 Microscopy and Elemental Analysis;79
12.4;4 Conclusion;81
12.5;References;81
13;9 A Novel Single Step Ultrasound Assisted Synthesis of Nano Size Metal Oxides Metal Carbides and Metal Nitrides;82
13.1;1 Introduction;82
13.2;2 Experimental;83
13.3;3 Results and Discussions;85
13.3.1;3.1 X-ray Diffraction;85
13.3.2;3.2 BET Surface Area Analysis;87
13.3.3;3.3 Size Distribution Analysis;87
13.3.4;3.4 Scanning Electron Microscopy (SEM) Analysis;88
13.4;4 Conclusion;88
13.5;References;89
14;Biosorption and Degradation;90
15;10 Denitrification Under Aerobic Condition in Draft Tube Spouted Bed Reactor;91
15.1;1 Introduction;91
15.2;2 Materials and Methodology;92
15.2.1;2.1 Growth Media Composition;92
15.2.2;2.2 Analytical Method;92
15.3;3 Experimentation;93
15.3.1;3.1 Experimental Procedure;93
15.4;4 Results and Discussion;94
15.4.1;4.1 Effect of Influent Nitrate Concentrations and Dilution Rates on Time to Attain Steady State;94
15.4.2;4.2 Effect of Nitrate Loading Rate on Removal Rate at Different GAC Loading;95
15.4.3;4.3 Effect of Ratio of Nitrate Loading Rate to Attached Biomass Weight on Percentage Nitrate Removal;96
15.5;5 Conclusion;97
15.6;Acknowledgments;98
15.7;References;98
16;11 Feasibility of Anaerobic Ammonium Oxidation in the Presence of Bicarbonate;99
16.1;1 Introduction;99
16.2;2 Materials and Methods;100
16.2.1;2.1 Nutrient Media for Anaerobic Ammonia Oxidation;100
16.2.2;2.2 Biomass;100
16.2.3;2.3 Batch Reactor Studies;100
16.2.4;2.4 Kinetic Studies;101
16.2.5;2.5 Analytical Techniques;101
16.3;3 Results and Discussion;101
16.3.1;3.1 Feasibility of Anaerobic Ammonium Oxidation Using HCO3? as Electron Acceptor;101
16.3.2;3.2 Kinetic Studies;103
16.4;4 Conclusions;104
16.5;References;105
17;12 Denitration of High Nitrate Bearing Alkaline Waste Using Two Stage Chemical and Biological Process;106
17.1;1 Introduction;106
17.2;2 Materials and Method;107
17.2.1;2.1 Chemical Denitration;107
17.2.2;2.2 Biological Denitrification;108
17.3;3 Result and Discussion;109
17.3.1;3.1 Chemical Denitration;109
17.3.2;3.2 Biological Denitrification;112
17.4;4 Conclusion;114
17.5;References;114
18;13 Optimization Study of Cadmium Biosorption on Sea Urchin Test: Application of Response Surface Methodology;116
18.1;1 Introduction;116
18.2;2 Materials and Methods;117
18.2.1;2.1 Biosorbent Preparation;117
18.2.2;2.2 Preparation Synthetic Cd(II) Stock Solution;117
18.2.3;2.3 Biosorption Experiments (Batch Mode);118
18.2.4;2.4 Design Variables for Biosorption Study;118
18.2.5;2.5 Process Optimization;118
18.3;3 Results and Discussion;120
18.3.1;3.1 Competency of the Model for Cd(II) Removal;120
18.3.2;3.2 Regression Analysis;121
18.3.3;3.3 ANOVA for Response Surface Quadratic Model;122
18.3.4;3.4 Optimization and Confirmation;123
18.4;4 Conclusion;123
18.5;References;123
19;14 Optimization of Nickel (II) and Cadmium (II) Biosorption on Brewery Sludge Using Response Surface Methodology;125
19.1;1 Introduction;125
19.2;2 Materials and Methods;126
19.3;3 Results and Discussion;126
19.4;4 Conclusion;130
19.5;Acknowledgments;130
19.6;References;130
20;15 Biosorption of Copper from Wastewater Using Spirulina Species;132
20.1;1 Introduction;132
20.2;2 Materials and Methods;133
20.3;3 Results and Discussions;133
20.3.1;3.1 Effect of Contact Time (min);133
20.3.2;3.2 Effect of Biosorbent Dosage;134
20.3.3;3.3 Effect of pH;134
20.3.4;3.4 Effect of Initial Cu Ion Concentration;135
20.3.5;3.5 Adsorption Isotherm Study of Cu Metal;136
20.3.6;3.6 Column Studies;137
20.3.7;3.7 Experiment on Industrial Sample;137
20.4;4 Summary/Conclusion;138
20.5;References;138
21;16 A Study on Simultaneous Photocatalytic Removal of Hexavalent Chromium and Pharmaceutical Contaminant from Aqueous Phase;139
21.1;1 Introduction;139
21.2;2 Materials and Methods;140
21.3;3 Results and Discussions;142
21.3.1;3.1 Characterization of the Catalyst;142
21.3.2;3.2 Reduction of Hexavalent Chromium;143
21.4;4 Conclusions;145
21.5;Acknowledgments;145
21.6;References;145
22;17 Effect of Precursor Salt Solution Concentration on the Size of Silver Nanoparticles Synthesized Using Aqueous Leaf Extracts of T. catappa and T. grandis Linn f.—A Green Synthesis Route;147
22.1;1 Introduction;147
22.2;2 Materials and Methods;148
22.2.1;2.1 Collection of the Plant Material;148
22.2.2;2.2 Preparation of the Aqueous Extracts of T. catappa (ALE) and T.Grandis Linn f (TLE) Leaves;148
22.2.3;2.3 Biosynthesis of AgNPs;148
22.3;3 Results and Discussion;149
22.4;4 Conclusion;152
22.5;References;152
23;18 Impact of Hydrochloric Acid on Phase Formation of Titanium Dioxide Nanoparticles;154
23.1;1 Introduction;154
23.2;2 Materials and Methods;155
23.3;3 Results and Discussion;156
23.4;4 Conclusions;159
23.5;References;159
24;19 Synthesis and Characterization of Mg Doped CuO Nano Particles by Quick Precipitation Method;160
24.1;1 Introduction;160
24.2;2 Materials and Method;161
24.3;3 Results and Discussion;161
24.3.1;3.1 XRD Analysis;161
24.3.2;3.2 FESEM and EDX Analysis;161
24.3.3;3.3 UV-Vis Analysis;162
24.4;4 Conclusion;165
24.5;References;165
25;20 Studies on Process Parameters of Continuous Production of Nickel Nanoparticles Using Spiral Microreactor;167
25.1;1 Introduction;167
25.2;2 Experimental;168
25.2.1;2.1 Chemicals;168
25.2.2;2.2 Experimental Setup and Synthesis;168
25.3;3 Result and Discussion;169
25.3.1;3.1 Effect of Temperature;169
25.3.2;3.2 Effect of Surfactant;171
25.3.3;3.3 Effect of N2H4/Ni2+ Molar Ratio;172
25.3.4;3.4 SEM Analysis: Nanoparticles Structure;172
25.4;4 Conclusion;173
25.5;References;173
26;21 Optimization of Cassava Pulp Pretreatment by Alkaline Hydrogen Peroxide Using Response Surface Methodology for Bioethanol Production;175
26.1;1 Introduction;175
26.2;2 Materials and Methods;176
26.2.1;2.1 Materials;176
26.2.2;2.2 Pretreatment;176
26.2.3;2.3 Enzyme Hydrolysis;176
26.2.4;2.4 Fermentation;177
26.2.5;2.5 Analytical Methods;177
26.2.6;2.6 Experimental Design;177
26.3;3 Results and Discussion;178
26.3.1;3.1 Effect of Solid to Liquid Ratio (SLR);178
26.3.2;3.2 Model Fitting;178
26.3.3;3.3 Effect of Process Variables on Reducing Sugar Yield;181
26.3.4;3.4 Confirmation Experiments;182
26.3.5;3.5 Spectral Characterization;182
26.3.6;3.6 Fermentation;183
26.4;4 Conclusions;183
26.5;References;184
27;22 Production of Biodiesel from Neem Oil Feedstock Using Bifunctional Catalyst;186
27.1;1 Introduction;186
27.2;2 Materials and Methods;188
27.2.1;2.1 Preparation of Catalyst;188
27.2.2;2.2 Method;188
27.2.3;2.3 Catalyst Recovery;190
27.3;3 Results and Discussion;190
27.3.1;3.1 Effect of Bifunctional Catalyst;190
27.3.2;3.2 Effect of Process Time;191
27.3.3;3.3 Effect of Catalyst;191
27.3.4;3.4 Effect of Ethanol to Oil Ratio;192
27.4;4 Conclusion;193
27.5;References;193
28;23 Influence of Feed Vapour Fraction on the Performance of Direct Methanol Fuel Cell;195
28.1;1 Introduction;195
28.2;2 Experimental Set Up;196
28.3;3 Results and Discussion;197
28.3.1;3.1 Effect of Feed Vapor Fraction;197
28.3.2;3.2 Effect of Methanol Concentration;197
28.3.3;3.3 Comparison with Neat Methanol;199
28.4;4 Conclusion;201
28.5;References;201
29;24 Electrocatalytic Borohydride Oxidation by Supported Tungsten Oxide Nanoclusters Towards Direct Borohydride Fuel Cells;203
29.1;1 Introduction;203
29.2;2 Experimental;205
29.3;3 Results and Discussion;205
29.4;4 Conclusion;207
29.5;References;208
30;25 Optimal Off-Grid Hybrid Options for Power Generation in Remote Indian Villages: HOMER Application and Analysis;209
30.1;1 Introduction;209
30.2;2 Methodology and Data Used;211
30.3;3 HOMER Analysis;213
30.4;4 Results and Discussion;213
30.4.1;4.1 Optimal Hybrid Energy System Architecture;213
30.5;5 Conclusions;216
30.6;References;216
30.7;Websites;216
31;26 Experimental Studies on Electricity Production and Removal of Hexavalent Chromium in Microbial Fuel Cell;217
31.1;1 Introduction;217
31.2;2 Materials and Methods;218
31.2.1;2.1 MFC Construction;218
31.2.2;2.2 MFC Operation;218
31.2.3;2.3 Measurement and Analysis;219
31.3;3 Results;220
31.3.1;3.1 Effect of PH;220
31.3.2;3.2 Effect of Concentration;221
31.3.3;3.3 Chromium Reduction;222
31.4;4 Discussion;222
31.5;5 Conclusion;224
31.6;References;224
32;27 Experimental Studies on Performance of Single Cell PEM Fuel Cell with Various Operating Parameters;225
32.1;1 Introduction;225
32.2;2 Experimental;227
32.2.1;2.1 Preparation of Catalyst Ink and Fabrication of MEA;227
32.2.2;2.2 Fuel Cell Tests;227
32.3;3 Results and Discussion;228
32.3.1;3.1 Effect of Operating Temperature;228
32.3.2;3.2 Effect of Operating Pressure;229
32.3.3;3.3 Effect of Anode Humidification Temperature;229
32.3.4;3.4 Effect of Cathode Humidification Temperature;230
32.3.5;3.5 Effect of Anode Gas Flow Rate (H2);231
32.3.6;3.6 Effect of Cathode Gas Flow Rate (O2);231
32.4;4 Conclusions;232
32.5;Acknowledgments;233
32.6;References;233
33;28 A Study on Utilization of Latex Processing Effluent for Treatment and Energy Recovery in Microbial Fuel Cell;234
33.1;1 Introduction;234
33.2;2 Materials and Methods;235
33.3;3 Results and Discussion;237
33.3.1;3.1 Contaminant Removal;237
33.3.2;3.2 Energy Recovery;238
33.4;4 Conclusions;240
33.5;Acknowledgments;240
33.6;References;240
34;29 Effect of Traditionally Synthesized Carbon Nano Particles as Bio-Fuel Blend on the Engine Performance;242
34.1;1 Introduction;242
34.2;2 Materials and Methodology;243
34.2.1;2.1 Materials;243
34.2.2;2.2 Traditional Method of Synthesizing Carbon Nanoparticles;243
34.2.3;2.3 Materials Characterization of Carbon Nanoparticle;243
34.2.4;2.4 Blending of Carbon Nanoparticles with Diesel;243
34.2.5;2.5 Experimental Setup;244
34.3;3 Results and Discussion;244
34.3.1;3.1 Characterization of Carbon Nanoparticle;244
34.3.2;3.2 Characterization Variation of Brake Thermal Efficiency (BTE);245
34.3.3;3.3 Effect of Smoke Capacity;246
34.3.4;3.4 Effect of Smoke Capacity;246
34.3.5;3.5 Variation of NOx Emission;247
34.4;4 Conclusion;247
34.5;Acknowledgments;248
34.6;References;248
35;30 Optimization of Chitosan Nanoparticles Synthesis and Its Applications in Fatty Acid Absorption;249
35.1;1 Introduction;249
35.2;2 Materials and Methods;250
35.2.1;2.1 Preparation of Chitosan Nanoparticles;250
35.2.2;2.2 Testing of Size of Chitosan Nanoparticles Using Zeta Analyzer;250
35.2.3;2.3 Testing for Fat Absorption of Chitosan Nanoparticles;250
35.3;3 Results and Discussion;251
35.4;4 Conclusion;252
35.5;References;252
36;31 Biosynthesis of Silver Nanoparticles Using Turmeric Extract and Evaluation of Its Anti-Bacterial Activity and Catalytic Reduction of Methylene Blue;253
36.1;1 Introduction;253
36.2;2 Methodology;254
36.2.1;2.1 Preparation of Extract;254
36.2.2;2.2 Synthesis of TUAgnps;254
36.2.3;2.3 Characterization of TUAgnps;254
36.2.3.1;2.3.1 UV-Visible Spectroscopic Characterization of TUAgnps;254
36.2.3.2;2.3.2 FT-IR Spectroscopic Studies;254
36.2.3.3;2.3.3 Particle Size Distribution and Zeta Potential;254
36.2.3.4;2.3.4 SEM and EDX Analysis;255
36.2.4;2.4 Effect of Biosynthesized TUAgnps on the Methylene Blue Reduction and Its Evaluation;255
36.2.5;2.5 Immobilization of TUAgnps on Cloth and Disk Diffusion Studies;255
36.3;3 Results;256
36.3.1;3.1 Characterization of TUAgnps;256
36.3.1.1;3.1.1 UV-Visible Spectrophotometer;256
36.3.1.2;3.1.2 FT-IR Spectroscopic Studies;256
36.3.1.3;3.1.3 Particle Size Distribution and Zeta Potential;256
36.3.1.4;3.1.4 SEM and EDX Analysis;258
36.3.2;3.2 Methylene Blue Dye Reduction by TUAgnps and Its Catalytic Activity;258
36.3.3;3.3 Antimicrobial Activity Studies;260
36.4;4 Conclusions;260
36.5;References;261
37;32 Comparison of Metal Oxide Nanomaterials: Humidity Sensor Applications;262
37.1;1 Introduction;262
37.2;2 Experimental Details;263
37.3;3 Results and Discussions;263
37.3.1;3.1 X-Ray Diffractometer;263
37.3.2;3.2 Particle Size Analyser;265
37.4;4 Humidity Sensor Application;265
37.5;5 Conclusion;269
37.6;Acknowledgments;269
37.7;References;269
38;Pollution Control;271
39;33 Assessment of Ambient Air Quality Parameters in Various Industries of Uttarakhand, India;272
39.1;1 Introduction;272
39.2;2 Materials and Methods;274
39.2.1;2.1 Identification of Industries for Air Quality Monitoring;274
39.2.2;2.2 Survey and Analysis of Various Industries;274
39.2.3;2.3 Data Collection/Sampling;274
39.3;3 Results and Discussion;275
39.4;4 Conclusion;281
39.5;Acknowledgments;282
39.6;References;282
40;34 Urban Air Pollution Impact and Strategic Plans—A Case Study of a Tier-II City;284
40.1;1 Introduction;284
40.2;2 Methodology;286
40.3;3 Results and Discussion;286
40.4;4 Conclusion;289
40.5;Acknowledgments;289
40.6;References;289
41;35 Optimization of Engineering and Process Parameters for Electro-Chemical Treatment of Textile Wastewater;291
41.1;1 Introduction;291
41.2;2 Materials and Method;292
41.2.1;2.1 Materials Used;292
41.2.2;2.2 Apparatus Design;292
41.2.3;2.3 Experimental Procedure;293
41.2.4;2.4 Analytical Method;293
41.2.5;2.5 Data Analysis;294
41.3;3 Results and Discussion;294
41.4;4 Conclusion;299
41.5;Acknowledgments;299
41.6;References;299
42;36 Secondary Treatment of Dairy Effluents with Trickle Bed;300
42.1;1 Introduction;300
42.2;2 Materials and Methods;301
42.3;3 Results and Discussions;303
42.4;4 Conclusion;306
42.5;References;307