Buch, Englisch, 384 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 295 g
Buch, Englisch, 384 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 295 g
ISBN: 978-0-367-38723-5
Verlag: CRC Press
Lucidly Integrates Current Activities
Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.
Examines Connections between Machine Learning & Bioinformatics
The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.
Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems
Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today’s biological experiments.
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
Weitere Infos & Material
Introduction. The Biology of a Living Organism. Probabilistic and Model-Based Learning. Classification Techniques. Unsupervised Learning Techniques. Computational Intelligence in Bioinformatics. Connections. Machine Learning in Structural Biology. Soft Computing in Biclustering. Bayesian Methods for Tumor Classification. Modeling and Analysis of iTRAQ Data. Mass Spectrometry Classification. Index.