Mirzazadeh / Molamohamadi / Leung | Optimization and Data Science in Industrial Engineering | Buch | 978-3-031-81454-9 | sack.de

Buch, Englisch, Band 2204, 356 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

Mirzazadeh / Molamohamadi / Leung

Optimization and Data Science in Industrial Engineering

First International Conference, ODSIE 2023, Istanbul, Turkey, November 16-17, 2023, Proceedings, Part I

Buch, Englisch, Band 2204, 356 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-81454-9
Verlag: Springer Nature Switzerland


This two-volume set CCIS 2204 and 2205 constitutes the refereed proceedings of the First International Conference on Optimization and Data Science in Industrial Engineering, ODSIE 2023, held in Istanbul, Turkey, during November 16–17, 2023.

The 33 full papers and 2 short papers presented in these proceedings were carefully reviewed and selected from 311 submissions.

The papers were organized in the following topical sections:

Part I: smart and intelligent transportation systems; machine/deep/reinforcement learning in industries; and advances of artificial intelligence/operational research tools in healthcare.

Part II: technology, learning and analytics in intelligent systems; expert systems, decision analysis, and advanced optimization; digital transformation of supply chain and logistics systems.

Mirzazadeh / Molamohamadi / Leung Optimization and Data Science in Industrial Engineering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Smart and Intelligent Transportation Systems.

.- Optimizing Traffic Flow: A Multi-Agent Approach to Dynamic Signal Control Accounting for Vehicle Types.

.- Estimating Parking Lot Occupancy Based on Traffic Congestion for Route Planning.

.- A Framework for Simulating the Optimal Allocation of Shared E-Scooters.

.- Performance Enhancement of Two-Way DF Relayed Cooperative NOMA Vehicular Network with Outdated CSI and Imperfect SIC.

.- Machine/Deep/Reinforcement Learning in Industries.

.- Integration of Artificial Intelligence for the Analysis and Monitoring of Projects within Companies.

.- Multi-Criteria Inventory Classification with Machine Learning Algorithms in the Manufacturing Industry.

.- Analyzing Results of Business Process Automation with Machine Learning Methods.

.- Predictive Analysis of Surface Defects in Engineering Structures Using Machine Learning Technologies.

.- Enhancing Autonomous Industrial Navigation: Deep Reinforcement Learning for Obstacle Avoidance in Challenging Environments.

.- Fast and Accurate Right-Hand Detection Based on YOLOv8 from the Egocentric Vision Dataset.

.- Comparative Study of 3D Hand Pose Estimation on HOI4D Dataset by Convolutional Neural Networks.

.- Prediction of Ethereum Prices Based on Blockchain Information in an Industrial Finance System using Machine Learning Techniques.

.- Email Classification of Text Data Using Machine Learning and Natural Language Processing Technique.

.- The Fake News Detection Model Explanation and Infrastructure Aspects.

.- Advances of Artificial Intelligence/Operational Research Tools in Healthcare.

.- An Advanced Approach to COVID-19 Detection using Deep Learning and X-ray Imaging.

.- Exploring Factors that Affect the User Intention to Take Covid Vaccine Dose.

.- Unsupervised Incremental-Decremental Attribute Learning Healthcare Application based Feature Selection.

.- On Solving the Physicians Scheduling Problem at an Emergency Department: A Case Study from Canada.

.- Temporal Emotional and Thematic Progression (TETP): A Novel Analysis of Mental Health Discussions on Social Platforms.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.