Mirkin | Clustering | Buch | 978-1-4398-3841-9 | sack.de

Buch, Englisch, 374 Seiten, Format (B × H): 161 mm x 237 mm, Gewicht: 672 g

Reihe: Chapman & Hall/CRC Computer Science & Data Analysis

Mirkin

Clustering

A Data Recovery Approach, Second Edition
2. überarbeitete Auflage 2012
ISBN: 978-1-4398-3841-9
Verlag: Taylor & Francis Inc

A Data Recovery Approach, Second Edition

Buch, Englisch, 374 Seiten, Format (B × H): 161 mm x 237 mm, Gewicht: 672 g

Reihe: Chapman & Hall/CRC Computer Science & Data Analysis

ISBN: 978-1-4398-3841-9
Verlag: Taylor & Francis Inc


Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods—K-Means for partitioning and Ward's method for hierarchical clustering—have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods.

Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches—spectral, modularity and uniform, additive, and consensus—treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed.

Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author’s explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.

Mirkin Clustering jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


What Is Clustering. What Is Data. K-Means Clustering and Related Approaches. Least-Squares Hierarchical Clustering. Similarity Clustering: Uniform, Modularity, Additive, Spectral, Consensus and Single Linkage. Validation and Interpretation. Least-Squares Data Recovery Clustering Models.


Boris Mirkin is a professor of computer science at the University of London, UK.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.