Minh / Murino | Algorithmic Advances in Riemannian Geometry and Applications | E-Book | sack.de
E-Book

E-Book, Englisch, 216 Seiten, eBook

Reihe: Advances in Computer Vision and Pattern Recognition

Minh / Murino Algorithmic Advances in Riemannian Geometry and Applications

For Machine Learning, Computer Vision, Statistics, and Optimization

E-Book, Englisch, 216 Seiten, eBook

Reihe: Advances in Computer Vision and Pattern Recognition

ISBN: 978-3-319-45026-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.
Minh / Murino Algorithmic Advances in Riemannian Geometry and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms.- Sampling Constrained Probability Distributions using Spherical Augmentation.- Geometric Optimization in Machine Learning.- Positive Definite Matrices: Data Representation and Applications to Computer Vision.- From Covariance Matrices to Covariance Operators: Data Representation from Finite to Infinite-Dimensional Settings.- Dictionary Learning on Grassmann Manifolds.- Regression on Lie Groups and its Application to Affine Motion Tracking.- An Elastic Riemannian Framework for Shape Analysis of Curves and Tree-Like Structures.


Dr. Hà Quang Minh
is a researcher in the Pattern Analysis and Computer Vision (PAVIS) group, at the Italian Institute of Technology (IIT), in Genoa, Italy.
Dr. Vittorio Murino
is a full professor at the University of Verona Department of Computer Science, and the Director of the PAVIS group at the IIT.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.