E-Book, Englisch, Band 1807, 432 Seiten, eBook
Reihe: Lecture Notes in Mathematics
Milman / Schechtman Geometric Aspects of Functional Analysis
Erscheinungsjahr 2003
ISBN: 978-3-540-36428-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Israel Seminar 2001-2002
E-Book, Englisch, Band 1807, 432 Seiten, eBook
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-36428-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- F. Barthe, M. Csörnyei and A. Naor: A Note on Simultaneous Polar and Cartesian Decomposition.- A. Barvinok: Approximating a Norm by a Polynomial.- S.G. Bobkov: Concentration of Distributions of the Weighted Sums with Bernoullian Coefficients.- S.G. Bobkov: Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures.- S.G. Bobkov and A. Koldobsky: On the Central Limit Property of Convex Bodies.- S.G. Bobkov and F.L. Nazarov: On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis.- J. Bourgain: Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena.- J. Bourgain: On Long-Time Behaviour of Solutions of Linear Schrödinger Equations with Smooth Time-Dependent Potential.- J. Bourgain: On the Isotropy-Constant Problem for 'PSI-2'-Bodies.- E.D. Gluskin: On the Sum of Intervals.- E. Gluskin and V. Milman: Note on the Geometric-Arithmetic Mean Inequality.- O. Guédon and A. Zvavitch: Supremum of a Process in Terms of Trees.- O. Maleva: Point Preimages under Ball Non-Collapsing Mappings.- V. Milman and R. Wagner: Some Remarks on a Lemma of Ran Raz.- F. Nazarov: On the Maximal Perimeter of a Convex Set in R^n with Respect to a Gaussian Measure.- K. Oleszkiewicz: On p-Pseudostable Random Variables, Rosenthal Spaces and l_p^n Ball Slicing.- G. Paouris: Psi_2-Estimates for Linear Functionals on Zonoids.- G. Schechtman, N. Tomczak-Jaegermann and R. Vershynin: Maximal l_p^n-Structures in Spaces with Extremal Parameters.- C. Schütt and E. Werner: Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body.- Seminar Talks (with Related Workshop and Conference Talks).