E-Book, Englisch, 436 Seiten, Web PDF
Reihe: IFAC Postprint Volume
Mikles / Huba New Trends in Design of Control Systems 1994
1. Auflage 2014
ISBN: 978-1-4832-9697-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 436 Seiten, Web PDF
Reihe: IFAC Postprint Volume
ISBN: 978-1-4832-9697-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Computer control systems are developing rapidly, therefore an insight of the latest trends in the design of control systems will increase the success of future developments. This publication brings together the latest key papers on research and development trends in this field, allowing both academics and industrial practioners to find new insights and gain from each other's experience.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;New Trends in Design of Control Systems;2
3;Copyright Page;3
4;Table of Contents;6
5;IFAC WORKSHOP ON NEW TRENDS IN DESIGN OF CONTROL SYSTEMS;4
6;PART I: NONLINEAR SYSTEMS I ;12
6.1;CHAPTER 1. TOOLS IN NONLINEAR SYSTEM THEORY. OUTPUT INJECTIONS AND CANONICAL FORMS;12
6.1.1;1 Introduction;12
6.1.2;2 Differential Forms;13
6.1.3;3 Canonical Form;13
6.1.4;4 Separability Condition;15
6.1.5;5 Examples;15
6.1.6;References;16
6.2;CHAPTER 2. OUTPUT TRACKING FOR A CLASS OF SINGLE-INPUT SINGLE-OUTPT NONLINEAR SYSTEMS: CASE OF POLYNOMIAL REFERENCE SIGNALS *;18
6.2.1;1 INTRODUCTION;18
6.2.2;2 NOTATION AND BASIC BACKGROUNG MATE-RIAL;18
6.2.3;3 PRELIMINARY RESULTS;19
6.2.4;4 MAIN RESULT;20
6.2.5;5 CONCLUSION;23
6.2.6;REFERENCES;23
6.3;CHAPTER 3. OUTPUT FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS: TOOLS AND EXAMPLES ;24
6.3.1;1. INTRODUCTION AND PROBLEM STATEMENT;24
6.3.2;2 . TOOLS AND EXAMPLES;25
6.3.3;3. CONCLUSIONS;27
6.3.4;4. ACKNOWLEDGEMENTS;27
6.3.5;5. REFERENCES;27
6.4;CHAPTER 4 . Robust LQ design by a sliding manifold approach ;28
6.4.1;1 INTRODUCTION;28
6.4.2;2 THE LQ REGULATION PROBLEM;28
6.4.3;3 ROBUSTNESS PROPERZ TIES;29
6.4.4;4 REFERENCES;30
6.5;CHAPTER 5. A MIMO VSS-TYPE SELF-TUNING CONTROL FOR A REMOTELY OPERATED VEHICLE. ;34
6.5.1;1. INTRODUCTION;34
6.5.2;2. ROV DYNAMICS;34
6.5.3;3. MINIMUM VARIANCE VSS CONTROLLER;36
6.5.4;4. MIMO SELF TUNING VSS CONTROLLER;36
6.5.5;4. IMPLEMENTATION AND RESULTS;38
6.5.6;5. CONCLUSIONS;39
6.5.7;6. REFERENCES;39
6.6;CHAPTER 6. OPTIMAL TERMINAL STATE CONTROL WITH DISTURBANCE REJECTION FOR SYSTEMS WITH TIME DELAY ;40
6.6.1;1 Introduction;40
6.6.2;Notation;40
6.6.3;2 Problem Statement;41
6.6.4;3 Main Result;41
6.6.5;4 Conclusions;43
6.6.6;5 References.;43
6.7;CHAPTER 7. A new system structure theory. Application to system properness ;44
6.7.1;Abstract.;44
6.7.2;Introduction.;44
6.7.3;2. The new definitions.;46
6.7.4;3. Some basic features of the new concepts.;47
6.7.5;4. Computing.;47
6.7.6;5. Comparing with the classical approach;48
6.7.7;6. Application to system properness;48
6.7.8;References.;49
6.8;CHAPTER 8. A LINEAR ALGEBRAIC FRAMEWORK FOR FEEDBACK LINEARIZAOTION OF DISCRETE-TIME NONLINEAR SYSTEMS;50
6.8.1;1. INTRODUCTION;50
6.8.2;2. ALGEBRAIC FORMALISM;50
6.8.3;3. STATIC STATE FEEDBACK LINEARIZATION;52
6.8.4;4. DYNAMIC STATE FEEDZ BACK LINEARIZATION;53
6.8.5;CONCLUSION;55
6.8.6;ACKNOWLEDGMENTS;55
6.8.7;REFERENCES;55
6.9;CHAPTER 9. AN OBSERVER FOR A ONE FLEXIBLE JOINT ROBOT B Y AN ALGEBRAIC METHOD;56
6.9.1;1. INTRODUCTION;56
6.9.2;2. LINEARIZATION AND OBSERVER SYNTHESIS;56
6.9.3;3. OBSERVER OF A SINGLE FLEXIBLE JOINT ROBOT;59
6.9.4;4. CONCLUSION;61
6.9.5;REFERENCES;61
6.10;CHAPTER 10.
SOME REMARKS ON QUASI-STATIC FEEDBACK OF GENERALIZED STATES;62
6.10.1;1 SYSTEMS;63
6.10.2;2 QUASI-STATIC STATE FEEDBACK;63
6.10.3;3 FEEDBACK SYNTHESIS PROBLEMS;64
6.10.4;4 EX. 1: AN OVERHEAD CRANE;64
6.10.5;5 EX. 2: NONLINEAR CIRCUIT;65
6.10.6;6 EX. 3: CASCADE OF CHEMICAL REACTORS;66
6.10.7;REFERENCES;67
7;PART II: POSTER PAPERS I ;68
7.1;CHAPTER 11.
OBSERVER-BASED FORCE CONTROL OF ROBOTS;68
7.1.1;1. INTRODUCTION;68
7.1.2;2. SYSTEM MODELLING;68
7.1.3;3. ROBUST COMPLIANT CONTROL;70
7.1.4;4. CONCLUSION;71
7.1.5;5. REFERENCES;71
7.2;CHAPTER 12.
CONTROL OF CENTRALIZED HEAT SUPPLY OUTPUT BY MEANS OF HOT WATER PIPING;72
7.2.1;I. INTRODUCTION;72
7.2.2;2. DESCRIPTION OF THE CONTEMPORARY STATE;72
7.2.3;3. DYNAMIC PROPERTIES OF CONTROLLED PLANT;73
7.2.4;4. DESIGNED ALGORITHM;74
7.2.5;5. CONCLUSION;74
7.2.6;6. REFERENCE;74
7.3;CHAPTER 13.
PARAMETRICALLY INVARIANT SERVOSYSTEMS OF ROBOTS;76
7.3.1;1. INTRODUCTION;76
7.3.2;2. PARAMETRIC DISTURBANCES;76
7.3.3;3. NON-INVARIANT POSITION SERVOSYSTEM OF THE ROBOT;77
7.3.4;4. INVARIANT SERVOSYSTEM OF THE ROBOT;79
7.3.5;5. CONCLUSION;81
7.3.6;6. REFERENCES;81
7.4;CHAPTER 14.
ROBOT ARM MOVEMENT INVERSE PROBLEM: A QUADRATIC INTER POLATION SOLUTION;84
7.4.1;1 INTRODUCTION;84
7.4.2;2 METHOD OVERVIEW;85
7.4.3;3 QUADRATIC AND CUOBIC INTERPOLATORS;86
7.4.4;4 CONCLUSIONS;87
7.4.5;5 ACKNOWLEDGEMENT;88
7.4.6;REFERENCES;88
7.5;CHAPTER 15.
CACSD/SW;90
7.5.1;1. INTRODUCTION;90
7.5.2;2. CONTROL AND 5. GENERATION;90
7.5.3;3. CASE;91
7.5.4;4. CASE - CAP BRIDGE;91
7.5.5;5. TEACHING;92
7.5.6;6. CONCLUSION;92
7.5.7;REFERENCES;92
7.6;CHAPTER 16.
CXT-COMPLEX TOOLS FOR FREQUENCY DOMAIN ANALYSIS OF DYNAMIC SYSTEMS;94
7.6.1;1. INTRODUCTION;94
7.6.2;2. THEORETICAL;94
7.6.3;3. PROGRAM DESCRIPTION;94
7.6.4;4. PROGRAM DEMONSTRATION;96
7.6.5;5. CONCLUSION;96
7.6.6;6. REFERENCES;96
7.7;CHAPTER 17.
CONTROL OF ROBOTIC MANUFACTURING CELLS;98
7.7.1;1. INTRODUCTION;98
7.7.2;2. FLEXIBLE MANUFACTURING SYSTEMS AND CELLS IN INDUSTRY;98
7.7.3;3. FM CELLS FOR RESEARCH AND DEVELOPMENT;100
7.7.4;4. CONCLUSIONS;104
7.7.5;5. REFERENCES;104
8;PART III:
NONUNEAR SYSTEMS II ;106
8.1;CHAPTER 18. SPEED-GRADIENT AND SPEED-DIFFERENCE ALGORITHMS FOR -MATCHED PROBLEMS OF NONLINEAR CONTROL ;106
8.1.1;1. INTRODUCTION;106
8.1.2;2. SPEED-GRADIENT ALGORITHM;106
8.1.3;3. SPEED-DIFFERENCE ALGORITHM;107
8.1.4;4. MAIN RESULTS;108
8.1.5;6. CONVERGENCE OF THE TRAJECTORIES IN THE FINITE TIME;109
8.1.6;7. APPLICABILITY OF THE ITERATIVE DESIGN UNDER BOUNDED DISTURBANCES;109
8.1.7;8. CONCLUSION;110
8.1.8;9. REFERENCES;110
8.2;CHAPTER 19.
A NEW STRUCTURE TO DESIGN OPTIMAL CONTROL SYSTEMS;112
8.2.1;1. INTRODUCTION;112
8.2.2;2. A NEW CONTROLLER STRUCTURE;112
8.2.3;3, A GENERIC SCHEME FOR OPTIMAL POLE PLACEMENT CONTROLLERS;113
8.2.4;4. FURTHER POSSIBILITIES;115
8.2.5;5. CONCLUSIONS;115
8.2.6;6. REFERENCES;115
8.3;CHAPTER 20.
APPLICATION OF PREDICTIVE CONTROL TO NONLINEAR MIMO SYSTEMS;116
8.3.1;1. INTRODUCTION;116
8.3.2;2. AUXILIARITY OF LRPC SYNTHESIS PROBLEM;117
8.3.3;3. NONLINEAR PREDICTIVE ALGORITHM;117
8.3.4;4. APPLICATION TO EVAPORATION PROCESS;118
8.3.5;5. CONCLUSION;121
8.3.6;REFERENCES;121
8.4;CHAPTER 21.
SATURATING POLE ASSIGNMENT CONTROLLER CONSTRUCTION AND GEOMETRICAL INTERPRETATION IN THE PHASE PLANE;122
8.4.1;1. INTRODUCTON;122
8.4.2;2. LINEAR POLE ASSIGNMENT CONTROL;123
8.4.3;3. REFERENCE BRAKING CURVE OF THE SATURATING CONTROLLER;125
8.4.4;4. PROPORTIONAL ZONE OF THE SATURATING CONTROLLER;126
8.4.5;5. CONCLUSIONS;127
8.4.6;REFERENCES:;127
9;PART IV:
FUZZY SYSTEMS, NEURAL NETWORKS, MANUFACTURING SYSTEMS DESIGN ;128
9.1;CHAPTER 22. Specification, Analysis and validation of distributed CONTROL SYSTEM: THE ACSY-R MODEL;128
9.1.1;1. INTRODUCTION;128
9.1.2;2. SOFTWARE COMMAND SYSTEM SPECIFICATION;128
9.1.3;3. ARCHITECTURE ANALYSIS AND VALIDATION;130
9.1.4;4. ACSY-R METHODOLOGY;132
9.1.5;5. THE ASSOCIATED TOOL: SOFTWARE PRODUCER;132
9.1.6;6. CONCLUSION;133
9.1.7;7. References;133
9.2;CHAPTER 23.
COORDINATED TRAJECTORIES PLANNING FOR TWO COOPERATING ROBOTS;134
9.2.1;1. INTRODUCTION;134
9.2.2;2. KINEMATICS OF DUAL-ARM SYSTEM;135
9.2.3;3. AN ADMISSIBLE PATH PLANNING;136
9.2.4;4. PATH APPROXIMATION;136
9.2.5;5. A FEASIBLE VELOCITY DETERMINATION PROBLEM;137
9.2.6;6. COMPUTATIONAL EXAMPLE;137
9.2.7;7. CONCLUSIONS;138
9.2.8;8. REFERENCES;138
9.3;CHAPTER 24. FUZZY CONTROL OF AN IRON ORE SINTER PLANT;140
9.3.1;1. INTRODUCTION;140
9.3.2;2. BUNKER LEVEL CONTROL;140
9.3.3;3. BURN-TROUGH-POINT CONTROL;142
9.3.4;4. SIMULATION RESULTS;143
9.3.5;5. CONCLUSION;144
9.3.6;6. REFERENCES;144
9.4;CHAPTER 25.
ON ADAPTIVE FUZZY CONTROL USING NEURAL NETWORKS;146
9.4.1;1. INTRODUCTION;146
9.4.2;2. STRUCTURE OF ADAPTIVE CONTROL SYSTEM;147
9.4.3;3. EXPERIMENTAL RESULTS;149
9.4.4;4. CONCLUSION;151
9.4.5;S. REFERENCES;151
9.5;CHAPTER 26. METHODOLOGY OF SITUATIONAL CONTROL CREATION AND ITS APPLICATION;152
9.5.1;1. INTRODUCTION;152
9.5.2;2. SITUATIONAL CONTROL OF COMPLEX TECHNICAL SYSTEMS;153
9.5.3;3 . APPLICATION OF SITUATIONAL CONTROL OF AN AUTOMATED WORKPLACE;153
9.5.4;4. CONCLUSION;154
9.5.5;5. REFERENCES;154
10;PART V:
POSTER PAPERS II ;160
10.1;CHAPTER 27.
ROBUST CONTROL DESIGN USING THE ALGEBRAIC POLYNOMIAL APPROACH.;160
10.1.1;1. INTRODUCTION;160
10.1.2;2. DESIGN OF THE ALGEBRAIC FEEDFORWARD-FEEDBACK DEAD-BEAT CONTROLLER.;161
10.1.3;3. IMC PARAMETRIZATION OF CONTROLLER AND IMC FILTERS.;162
10.1.4;4. EXAMPLE: HYDRAULIC VELOCITY SERVOSYSTEM.;164
10.1.5;5. CONCLUSION.;165
10.1.6;6. REFERENCES;165
10.2;CHAPTER 28.
DECENTRALIZED ADAPTIVE RELIABLE CONTROL;166
10.2.1;1. INTRODUCTION;166
10.2.2;2. DECENTRALIZED CONTROL WITH DISCRETE EVENTS;166
10.2.3;3. DECENTRALIZED ADAPTIVE OPTIMAL RELIABLE CONTROL;167
10.2.4;4. CONCLUSION;169
10.2.5;5. REFERENCES;169
10.3;CHAPTER 29. ON THE INTERPRETATION OF H8 CRITERION;170
10.3.1;1. INTRODUCTION;170
10.3.2;2. ROBUST MARGINS;170
10.3.3;3. A GAIN SENSITIVITY REQUIREMENT;171
10.3.4;4. THE M -a AND E-ß CURVES;171
10.3.5;5. INTERPRETATION OF H8 ROBUSTNESS IN FREQUENCY DOMAIN;172
10.3.6;6. CONCLUSIONS;173
10.3.7;7. REFERENCES;173
10.4;CHAPTER 30. SYNTHESIS OF LINEAR CONTROLLERS USING PAIRWISE AUTONOMOUS SUBSYSTEM APPROACH ;174
10.4.1;1. INTRODUCTION;174
10.4.2;2. PROBLEM FORMULATION;174
10.4.3;3. SOLUTION OF THE LINEAR-QUADRATIC PROBLEM;175
10.4.4;4. SIMULATION RESULTS;176
10.4.5;4. CONCLUSION;176
10.4.6;5. REFERENCES;177
10.5;CHAPTER 31. IDENTIFICATION OF DISCONTINUOUS BLOCK-ORIENTED NONLINEAR DYNAMIC SYSTEMS ;178
10.5.1;INTRODUCTION;178
10.5.2;DISCONTINUOUS NONLINEARITY DECOMPOSITION;178
10.5.3;DISCONTINUOUS HAHMERSTEIN MODEL;179
10.5.4;IDENTIFICATION ALGORITHM;180
10.5.5;EXAMPLES;180
10.5.6;CONCLUSIONS;182
10.5.7;REFERENCES;183
11;PART VI:
ROBUST CONTROL ;184
11.1;CHAPTER 32. DIRECT CALCULATION OF STABILITY MARGINS ;184
11.1.1;1. INTRODUCTION;184
11.1.2;2. ELEMENTS FROM ALGEBRA;184
11.1.3;3. THE FRAMEWORK;185
11.1.4;4. ALGEBRAIC STABILITY CRITERIA;185
11.1.5;5. THE CALCULATION ALGORITHM;186
11.1.6;6. EXTENSIONS AND APPLICATIONS;186
11.1.7;7. CONCLUSION;189
11.1.8;8. REFERENCES;189
11.2;CHAPTER 33. Design of Optimal Controllers with Respect to Time and Frequency Domain Specifications ;190
11.2.1;1. INTRODUCTION;190
11.2.2;2. NUMERICAL CALCULATION OF GLOBALLY OPTIMAL CONTROLLERS;190
11.2.3;3. CONTROLLER DESIGN AS A CONVEX OPTIMIZATION PROBLEM;191
11.2.4;4. EXAMPLE;192
11.2.5;5. CONCLUSION;194
11.2.6;6. REFERENCES;194
11.3;CHAPTER 34. A NEW ALGORITHM FOR ROBUSTNESS ANALYSIS VIA THE STRUCTURED SINGULAR VALUE µ;196
11.3.1;1. INTRODUCTION;196
11.3.2;2. BACKGROUND;196
11.3.3;3. CONVEX ESTIMATES OF µ;198
11.3.4;4. A NEW ALGORITHM FOR µ..;198
11.3.5;5. COMPUTING EXPERIENCE;200
11.3.6;6. CONCLUSIONS;201
11.4;CHAPTER 35. EXPERIMENTAL EVALUATION OF PARTIAL STATE REFERENCE MODEL CONTROL RELEVANT IDENTIFICATION ;204
11.4.1;1 INTRODUCTION;204
11.4.2;2 PROBLEM FORMULATION;204
11.4.3;3 EXPERIMENTAL EVALUATION;207
11.4.4;4 CONCLUSION;208
11.4.5;REFERENCES;208
11.5;CHAPTER 36. ROBUST REGULATION FOR FLEXIBLE PIEZOELECTRIC STRUCTURES ;210
11.5.1;1 INTRODUCTION;210
11.5.2;2 DYNAMIC MODEL OF THE STRUCTURE;210
11.5.3;3 ROBUST REGULATION;211
11.5.4;4 SIMULATION RESULTS;214
11.5.5;5 CONCLUSIONS;215
11.5.6;ACKNOWLEDGEMENTS;215
11.5.7;REFERENCES;215
11.5.8;APPENDIX;215
11.6;CHAPTER 37.
HIERARCHICAL ROBUST CONTROL OF LINEAR SYSTEMS WITH JUMPS1;216
11.6.1;1 Introduction;216
11.6.2;2 Systems description and problem formulation;217
11.6.3;3 Robust stability and guaranteed cost property;218
11.6.4;4 Conclusion;218
11.6.5;References;219
11.7;CHAPTER 38.DECENTRALIZED STABILIZATION OF DISCRETE-TIME SYSTEMS: SUBSYSTEM ROBUSTNESS APPROACH;220
11.7.1;1. INTRODUCTION;220
11.7.2;2. SYSTEM ROBUSTNESS BOUND ESTIMATE;220
11.7.3;3. STABILITY OF DISCRETE-TIME LSS;221
11.7.4;4. STABILIZATION CONTROL OF LSS;222
11.7.5;5. CONCLUSION;224
11.7.6;6. REFERENCES;224
11.8;CHAPTER 39. AN ALGORITHM FOR STEADY-STATE OPTIMIZING DUAL CONTROL OF UNCERTAIN PLANTS ;226
11.8.1;1. INTRODUCTION;226
11.8.2;2. PROBLEM FORMULATION AND ISOPE PRINCIPLE;227
11.8.3;3. NEW ALGORITHM;227
11.8.4;4. ALGORITHM PROPERTIES;229
11.8.5;5. SIMULATION RESULTS;230
11.8.6;REFERENCES;231
11.9;CHAPTER 40. FURTHER RESULTS IN NON-LYAPUNOV STABILITY ROBUSTNESS OF GENERALIZED STATE-SPACE SYSTEMS ;232
11.9.1;1. INTRODUCTON;232
11.9.2;2. INITIAL CONSIDERATIONS;233
11.9.3;3. MAIN RESULTS;233
11.9.4;4. CONCLUSION;236
11.9.5;5. REFERENCES;236
11.10;CHAPTER 41. DECENTRALIZED VARIABLE STRUCTURE CONTROL OF COMPLEX SYSTEMS ;238
11.10.1;1. INTRODUCTION;238
11.10.2;2 . PROBLEM STATEMENT;238
11.10.3;3. MAIN RESULTS;239
11.10.4;4. VSS - DC DESIGN;240
11.10.5;5. CONCLUSIONS;243
11.10.6;6 . REFERENCES;243
12;PART VII:
POSTER PAPERS III ;244
12.1;CHAPTER 42. STABILITY BASED DESIGN OF FUZZY LOGIC CONTROLLER ;244
12.1.1;1. INTRODUCTION;244
12.1.2;2. MAIN TOPICS;244
12.1.3;3. FORMULATION OF THE PROBLEM;244
12.1.4;4. STABILITY ANALYSIS BY CLASSICAL METHODS;245
12.1.5;5. SPECIALISED FUZZY CONTROLLER;246
12.1.6;6. DESIGN METHOD;247
12.1.7;7. EXAMPLE;248
12.1.8;8. SUMMARY;249
12.1.9;9. REFERENCES;249
12.2;CHAPTER 43. DECENTRALIZED ADAPTIVE CONTROL BASED DELTA MODEL REPRESENTATION;250
12.2.1;1. INTRODUCTION;250
12.2.2;2. PROBLEM STATEMENT;250
12.2.3;3. LOCAL SUBSYSTEM CONTROL;251
12.2.4;4. GLOBAL CONTROL;251
12.2.5;5. RECURSIVE IDENTIFICATION OF DELTA MODELS;252
12.2.6;6. NUMERICAL EXAMPLES;252
12.2.7;7. CONCLUSION;255
12.2.8;8. REFERENCES;255
12.3;CHAPTER 44. ADAPTIVE SLIDING MODE CONTROL OF POSITION SERVO SYSTEM ;256
12.3.1;1. INTRODUCTION;256
12.3.2;2. ADAPTIVE SLIDING MODE STRATEGY;257
12.3.3;3. DESCRIPTION OF EXPERIMENTAL SYSTEM;258
12.3.4;4. DESIGN CONSIDERATIONS;259
12.3.5;5. EXPERIMENTAL RESULTS;260
12.3.6;6. CONCLUSIONS;261
12.3.7;7. REFERENCES;261
12.4;CHAPTER 45. ADAPTIVE CONTROL OF CONTINUOUS BIOPROCESSES;262
12.4.1;1. INTRODUCTION;262
12.4.2;2. MATHEMATICAL MODEL;263
12.4.3;3. SELF-TUNING EXTREMUM CONTROL;263
12.4.4;4. THE ISOPE OPTIMISING PROCEDURE;264
12.4.5;5. RESULTS AND DISCUSSION;265
12.4.6;6. CONCLUSION;267
12.4.7;7. REFERENCES;267
12.5;CHAPTER 46. ROBUST FUZZY-LOGIC CONTROL OF CONVERTER - SYNCHRONOUS MOTOR DRIVE ;268
12.5.1;1. INTRODUCTION;268
12.5.2;2. CONTROL SYSTEM;268
12.5.3;3. FUZZY CONTROLLER;269
12.5.4;4. THE SIMULATION RESULTS;270
12.5.5;5. VERIFICATION OF SIMULATION RESULTS;271
12.5.6;6 . CONCLUSION;272
12.5.7;PARAMETERS OF THE SYSTEM;273
12.5.8;NOMENCLATURE;273
12.5.9;REFERENCES;273
12.6;CHAPTER 47.
DESIGN OF A ROBUST CONTROLLER FOR A FLEXIBLE TRANSMISSION;274
12.6.1;1 INTRODUCTION;274
12.6.2;2 SYSTEM DESCRIPTION.;274
12.6.3;3 SYSTEM IDENTIFICAOTION.;274
12.6.4;4 THE H8 ROBUST CONTROLLER;275
12.6.5;5 EXPERIMENTAL RESULTS;276
12.6.6;6 CONCLUSION;276
12.6.7;7 REFERENCES;277
12.7;CHAPTER 48.
Adaptive Recursive Identification with Model Change Prediction;278
12.7.1;1. INTRODUCTION;278
12.7.2;2. REVIEW OF PARAMETER TRACKING;278
12.7.3;3. MOTIVATION;279
12.7.4;4. THE NEW ALGORITHM;279
12.7.5;5. SIMULATION EXAMPLE;282
12.7.6;6. CONCLUSION;283
12.7.7;7. ACKNOWLEDGMENTS;283
12.7.8;REFERENCES;283
12.8;CHAPTER 49.
ROBUST SELF-TUNING PID CONTROLLER;284
12.8.1;1. INTRODUCTION;284
12.8.2;2. ALGORITHM OF THE CONTROL SYNTHESIS;284
12.8.3;3. ALGORITHM STC PID;287
12.8.4;4. SIMULATION VERIFICATION AND CONCLUSION;287
12.8.5;5. REFERENCES;289
12.8.6;ACKNOWLEDGMENT;289
12.9;CHAPTER 50.
CONTROL SYSTEM DESIGN ASPECTS OF DIGITAL TRANSDUCERS;290
12.9.1;I. INTRODUCTION;290
12.9.2;II. SIGMA DELTA MODULATION;290
12.9.3;III. A CLOSED-LOOP DIGITAL TRANSDUCER;291
12.9.4;IV. CONTROL SYSTEM ASPECTS;291
12.9.5;V LIMIT CYCLE PREDICTION;292
12.9.6;VI. CLOSED LOOP PERFORMANCE;293
12.9.7;VII. CONCLUSIONS;293
12.9.8;REFERENCES;294
12.10;CHAPTER 51. PROGRAM TRANSFORMATIONS FOR DISTRIBUTED CONTROL SYSTEMS ;296
12.10.1;1 Introduction;296
12.10.2;2 CSP and its normal forms;297
12.10.3;3 Transformations for the development of distributed applications;298
12.10.4;4 The transformational tool box;300
12.10.5;5 Conclusion;301
12.10.6;References;301
13;PART VIII:
PERIODIC SYSTEMS ;302
13.1;CHAPTER 52. THE LIFTED AND CYCLIC REFORMULATIONS IN THE MINOIMAL REALIZATION OF LINEAR DISCRETE-TIME PERIODIC SYSTEMS 1;302
13.1.1;1 Introduction;302
13.1.2;2 Invariant reformulations of periodic systems;302
13.1.3;3 The realization problem;305
13.1.4;References;307
13.2;CHAPTER 53.
Pole assignment for linear systems by periodic output feedback;308
13.2.1;1 Introduction;308
13.2.2;2 Memoryless periodic output feedback for stationary systems;309
13.2.3;3 Memoryless periodic output feedback for periodic linear systems;310
13.2.4;References;312
13.2.5;Acknowledgments;312
13.2.6;4 Appendix;312
13.3;CHAPTER 54.
PROBLEMS OF DISCRETE-TIME PERIODIC REALIZATION OF A PERIODIC COLLECTION OF RATIONAL MATRICES;314
13.3.1;1. INTRODUCCTION;314
13.3.2;2. PERIODIC REALIZATIONS;314
13.3.3;3. MINIMAL PERIODIC REALIZATIONS;315
13.3.4;4. DIMENSION OF THE MINIMAL AND C-MINIMAL PERIODIC REALIZATIONS;316
13.3.5;5. REFERENCES;317
13.4;CHAPTER 55.
PERIODIC SYSTEMS REALIZATION THEORY WITH APPLICATIONS;320
13.4.1;1 Introduction;320
13.4.2;2 Periodic System Representation;320
13.4.3;3 State Space Analysis;323
13.4.4;4 Periodic Symmetry Group;324
13.4.5;5 Periodic Realization;324
13.4.6;6 Periodic Robust Control;324
13.4.7;References;325
14;PART IX:
DISCRETE EVENT SYSTEMS, PETRI NETS ;326
14.1;CHAPTER 56.
Flexible Manufacturing System Design Using Object and Petri Net Concepts;326
14.1.1;1. INTRODUCTION;326
14.1.2;2. HOOD/PNO OVERVIEW;327
14.1.3;3. FMS CONTROL DESIGN USING HOOD/PNO;328
14.1.4;4. CONCLUSION;330
14.1.5;5. REFERENCES;330
14.2;CHAPTER 57.
INPUT SEQUENCING FOR ASSEMBLY LINES A CUTTING PLANE ALGORITHM;332
14.2.1;1. INTRODUCTION;332
14.2.2;2. PROBLEM FORMULATION;333
14.2.3;3. COMPLEXITY;333
14.2.4;4. A CUTTING PLANE ALGORITHM;335
14.2.5;5. EXPERIMENTAL RESULTS;336
14.2.6;6. CONCLUSIONS;336
14.2.7;7. APPENDIX;336
14.2.8;8. REFERENCES;337
14.3;CHAPTER 58. LONG-RUN BEHAVIOR OF THE ASYNCHRONOUS ASSEMBLY AUTOMATIC SYSTEM ;338
14.3.1;1. INTRODUCTION;338
14.3.2;2. DESCRIPTION OF SYSTEM;338
14.3.3;3. GSMP MODEL;338
14.3.4;4. LONG-RUN BEHAVIOR;340
14.3.5;5. CONCLUSION;342
14.3.6;6. REFERENCES;342
14.4;CHAPTER 59.
AN APPROACH TO OBJECT-ORIENTED MODELLING AND CONTROL OF A DEDS;344
14.4.1;1. INTRODUCTION;344
14.4.2;2. OBJECT AND OBJECT STATE CLASSES;345
14.4.3;3. THE STATIC STRUCTURE OF THE 0 -0 MODEL;345
14.4.4;4. DYNAMICS OF THE 0 -0 MODEL;346
14.4.5;5. CONCLUSION;348
14.4.6;6 . REFERENCES;348
14.4.7;APPENDIX;349
14.5;CHAPTER 60.
THE SUPERVISORY CONTROL PROBLEM SOLVED VIA PETRI NETS;350
14.5.1;1. INTRODUCTION;350
14.5.2;2. CONCEPTION OF THE SUPERVISORY CONTROL;350
14.5.3;3. THE SUPERVISORY CONTROL APPLIED FOR PRACTICAL PROBLEMS;351
14.5.4;4. PETRI NETS: BASIC DEFINITIONS AND PROPERTIES;352
14.5.5;5. A CLASS OF PETRI NETS INTERPRETED FOR CONTROL AND THE SUPERVISORY CONTROL;352
14.5.6;6. CONCLUSION;355
14.5.7;5. REFERENCES;355
14.6;CHAPTER 61.
A PETRI NET-BASED APPROACH TO SYNTHESIS OF CONTROL SYSTEMS FOR DISCRETE EVENT DYNAMIC SYSTEMS;356
14.6.1;1. INTRODUCTION;356
14.6.2;2. MATHEMATICAL MODELLING;356
14.6.3;3. THE CONTROL SYNTHESIS;358
14.6.4;4. THE KNOWLEDGE REPRESENTATION;359
14.6.5;5. THE ILLUSTRATIVE EXAMPLE;360
14.6.6;6. CONCLUSIONS;361
14.6.7;7. REFERENCES;361
15;PART X:
POSTER PAPERS IV ;362
15.1;CHAPTER 62.
CONTROL SYSTEMS DESIGN WITH RELIABILITY DEFINED IN ADVANCE;362
15.1.1;1. INTRODUCTION;362
15.1.2;2. THEORETICAL STRUCTURAL DEPENDABILITY MODEL OF A CONTROL SYSTEM;363
15.1.3;3. RESULTS FROM VERIFICATION OF A DEPENDABILITY MODEL OF A CONTROL SYSTEM;364
15.1.4;4. CONCLUSION;365
15.1.5;5. REFERENCES;365
15.2;CHAPTER 63.
GENERALIZED T-INVARIANTS OF PETRI NETS AND CONTROL OF DEDS;366
15.2.1;1. INTRODUCTION;366
15.2.2;2. PETRI NETS AND T-INVARIANTS;367
15.2.3;3. GENERALIZED T-INVARIANTS;368
15.2.4;4. CONCLUSION;371
15.2.5;5. REFERENCES;371
15.3;CHAPTER 64.
IMPLEMENTATION OF SYSTEMS WITH DECLARATIVE CONSTRAINTS;372
15.3.1;1. INTRODUCTION;372
15.3.2;2. CONSTRAINT LOGIC PROGRAMMING;372
15.3.3;3. SCHEDULING;372
15.3.4;4. A SIMPLE SCHEDULER;373
15.3.5;5. A MORE COMPLEX EXAMPLE;374
15.3.6;6. ALLEN’S TEMPORAL RELATIONSHIPS;375
15.3.7;7. CONCLUSIONS;376
15.3.8;8. REFERENCES;377
15.4;CHAPTER 65.
SIGNIFICANCE OF CLUSTER ANALYSIS FOR SITUATIONAL CONTROL;378
15.4.1;1. INTRODUCTION;378
15.4.2;2. MACROSITUATIONS AND CLUSTER ANALYSIS;378
15.4.3;3. HIERARCHICAL AND NON-HIERARCHICAL CLUSTERING;379
15.4.4;4. COEFFICIENTS OF UNSIMILARITY OF CLUSTERS;379
15.4.5;5. STRUCTURE OF EXPERIMENTS FOR REALIZATION OF CLUSTERING;379
15.4.6;5. REFERENCES;380
15.4.7;REFERENCES;383
16;PART XI: ROUND TABLE DISCUSSION ;382
16.1;CHAPTER 66. ABOUT NEW TRENDS IN DESIGN OF CONTROL SYSTEMS ;382
16.2;CHAPTER 67
. ROUND TABLE DISCUSSION SESSION ABOUT NEW TRENDS IN CONTROL METHODS DESIGN AND IMPLEMENTATION;384
16.2.1;Professor Antti J. Niemi;384
16.2.2;References;384
16.2.3;Professor George Bekey;384
16.2.4;Professor Stefan Kozak;385
16.2.5;Professor Chris P. Lewis;387
16.2.6;References;388
16.2.7;Professor Eugen Saffert;388
16.2.8;Dr.-Ing. Branislaw Hniz;388
16.2.9;Reference;388
17;PART XII: ADAPTIVE AND SELFTUNING CONTROL ;390
17.1;CHAPTER 68
. BIOLOGICALLY INSPIRED ROBOT CONTROL;390
17.1.1;1. INTRODUCTION;390
17.1.2;2. PRINCIPLES OF CONVENTIONAL CONTROL;390
17.1.3;3. EXAMPLE 1: CONTROL OF ROBOT HANDS;391
17.1.4;4. EXAMPLE 2: EVOLUTION OF WALKING BEHAVIOR IN LEGGED ROBOTS;392
17.1.5;5. EXAMPLE 3: CONTROL OF AN AUTONOMOUS ROBOT HELICOPTER;392
17.1.6;6. OBSERVATIONS AND CONCLUSIONS;393
17.1.7;7. REFERENCES;394
17.2;CHAPTER 69 . NONLINEAR ADAPTIVE CONTROL: REGULATION-TRACKING-OSCILLATIONS ;396
17.2.1;1. INTRODUCTION;396
17.2.2;2. THE FORMULATION OF THE ADAPTIVE CONTROL PROBLEM;396
17.2.3;3. SPEED GRADIENT ALGORITHMS;397
17.2.4;4. MODEL REFERENCE CONTROL AND SYNCHRONIZING OSCILLATIONS;398
17.2.5;5. CONTROL OF CHAOTIC OSCILLATIONS.;399
17.2.6;6. SPEED-GRADIENT ALGORITHMS FOR HAMILTONIAN SYSTEMS;399
17.2.7;7. CONCLUSIONS;400
17.2.8;8. ACKNOWLEDGMENTS;400
17.2.9;9. REFERENCES;400
17.3;CHAPTER 70 . NONLINEAR SELFTUNING CONTROLLER BASED UPON LAGUERRE SERIES REPRESENTATION ;402
17.3.1;1. INTRODUCTION;402
17.3.2;2. PROBLEM STATEMENT;402
17.3.3;3. CONCLUSIONS;408
17.3.4;4. REFERENCES;408
17.4;CHAPTER 71.
DISCRETE SELF TUNING CONTROLLER DESIGN WITH TIME SERIES;410
17.4.1;1. INTRODUCTION;410
17.4.2;2. TIME DOMAIN CALCULATIONS;410
17.4.3;3. TIME SERIES CONTROLLER;412
17.4.4;4. SIMULATION EXAMPLES;414
17.4.5;5. CONCLUSION;415
17.4.6;6 . REFERENCES;415
17.5;CHAPTER 72 . STABLE CONSTRAINED PREDICTIVE CONTROL ;416
17.5.1;1 INTRODUCTION;416
17.5.2;2 POLE PLACEMENT ALGORITHM;416
17.5.3;3 CONSTRAINED PREDICTIVE CONTROL;417
17.5.4;4 SIMULATION RESULTS;419
17.5.5;5 CONCLUSIONS;421
17.5.6;6 REFERENCES;421
17.6;CHAPTER 73 . A DESIGN METHODOLOGY FOR THE ROBUST STABILIZATION PROBLEM ;422
17.6.1;1 INTRODUCTION;422
17.6.2;2 PRELIMINARIES;422
17.6.3;3 PARAMETER VARIATIONS ON ;423
17.6.4;4 DESIGN ALGORITHM;424
17.6.5;5 EXAMPLES;424
17.6.6;6 CONCLUSION;425
17.6.7;REFERENCES;425
17.7;CHAPTER 74 . AUGMENTED EMULATION AND COMPENSATION OF COMPUTATIONAL DELAY IN LINEAR CONTROL SYSTEMS ;428
17.7.1;1. INTRODUCTION;428
17.7.2;2. SAMPLING PERIOD SELECTION;428
17.7.3;3. PHASE ADVANCE COMPENSATOR;431
17.7.4;4. RESULTS;431
17.7.5;5. CONCLUSION;433
17.7.6;6. REFERENCES;433
17.8;CHAPTER 75. DESIGN OF DISTRIBUTED PARAMETER SYSTEMS OF CONTROL;434
17.8.1;1. INTRODUCTION;434
17.8.2;2. DISTRIBUTED PARAMETER SYSTEMS OF CONTROL;434
17.8.3;3. DPSC BLOCKS DESIGN;436
17.8.4;4. CYBERNETICALLY OPTIMAL STRUCTURES OF MACHINES AND DEVICES;438
17.8.5;5. CONCLUSION;439
17.8.6;6. REFERENCES;439
17.9;CHAPTER 76. A SIMPLIFIED APPROACH TO PARAMETER DESIGN OF SPECTRAL OBSERVERS ;440
17.9.1;1. INTRODUCTION;440
17.9.2;2. SIGNAL MODEL OBSERVATION;440
17.9.3;3. GAIN VECTOR SOLUTION;441
17.9.4;4. UPDATING RECURSIVE TRANSFORMS;442
17.9.5;5. SPECTRAL OBSERVERS OF RECURSIVE DFT IN QUADRATURE FORM;442
17.9.6;6. KALMAN SPECTRAL OBSERVERS;443
17.9.7;7. CONCLUDING REMARKS;444
17.9.8;8. REFERENCES;445
18;AUTHOR INDEX;446