Michel / Liu / Hou | Stability of Dynamical Systems | Buch | 978-3-319-33080-8 | sack.de

Buch, Englisch, 653 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 11223 g

Reihe: Systems & Control: Foundations & Applications

Michel / Liu / Hou

Stability of Dynamical Systems

On the Role of Monotonic and Non-Monotonic Lyapunov Functions

Buch, Englisch, 653 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 11223 g

Reihe: Systems & Control: Foundations & Applications

ISBN: 978-3-319-33080-8
Verlag: Springer International Publishing


The second edition of this textbook  provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions.  Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.

 The authors cover the following four general topics:

 - Representation and modeling of dynamical systems of the types described above

- Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions

- Specialization of this stability theory to finite-dimensional dynamical systems

- Specialization of this stability theory to infinite-dimensional dynamical systems

Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems.  It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.

Review of the First Edition:

“The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems.  [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”

- Alessandro Astolfi, IEEE Control Systems Magazine, February 2009

Michel / Liu / Hou Stability of Dynamical Systems jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Introduction.- Dynamical Systems.- Fundamental Theory: The Principal Stability and Boundedness Results on Metric Spaces.-Fundamental Theory: Specialized Stability and Boundedness Results on Metric Spaces.- Applications to a Class of Discrete-Event Systems.- Finite-Dimensional Dynamical Systems.- Finite-Dimensional Dynamical Systems: Specialized Results.- Applications to Finite-Dimensional Dynamical Systems.- Infinite-Dimensional Dynamical Systems.


Anthony N. Michel, PhD, is Professor Emeritus in the College of Engineering at the University of Notre Dame.

Ling Hou, PhD, is Professor in the Department of Electrical and Computer Engineering at St. Cloud State University.

Derong Liu, PhD, is Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Chicago.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.