Michalski | Multistrategy Learning | Buch | 978-0-7923-9374-0 | sack.de

Buch, Englisch, Band 240, 155 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 431 g

Reihe: The Springer International Series in Engineering and Computer Science

Michalski

Multistrategy Learning

A Special Issue of Machine Learning

Buch, Englisch, Band 240, 155 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 431 g

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-0-7923-9374-0
Verlag: Springer Us


Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing , which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
contains contributions characteristic of the current research in this area.
Michalski Multistrategy Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning.- Multistrategy Learning and Theory Revision.- Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning.- Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.- Balanced Cooperative Modeling.- Plausible Justification Trees: A Framework for Deep and Dynamic Integration of Learning Strategies.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.