• Neu
Meng / Wang / Chen | Big Data and Social Computing | Buch | 978-981-950879-2 | sack.de

Buch, Englisch, 506 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g

Reihe: Communications in Computer and Information Science

Meng / Wang / Chen

Big Data and Social Computing

10th China National Conference, BDSC 2025, Kunming, China, August 15-17, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-950879-2
Verlag: Springer

10th China National Conference, BDSC 2025, Kunming, China, August 15-17, 2025, Proceedings

Buch, Englisch, 506 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-950879-2
Verlag: Springer


This book constitutes the refereed proceedings of the 10th China National Conference on Big Data and Social Computing, BDSC 2025, held in Kunming, China, during August 15–17, 2025.

The 40 full papers included in this book were carefully reviewed and selected from 140 submissions. They were organized in topical sections as follows: Digital Society Construction and Governance; Modelling and Simulation of Social Systems; Internet Intelligent Algorithm Governance; Social Network and Group Behavior; Innovation, Risks, and Security of Large Language Models; Artificial Intelligence and Cognitive Science; Applications of Large Language Models in Societal Contexts and Social Geography and Urban Computing.

Meng / Wang / Chen Big Data and Social Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Digital Society Construction and Governance.

.- CNN-Based Grain Quality and Quantity Prediction from Small Samples.

.- Echo Chambers and Filter Bubbles Reconsidered: Unpacking Scholarly, Industrial, and Media Perspectives on Their Existence and Causes.

.- Exploration of Resilience in Nonlinear Collaborative Supply Chain Networks.

.- Detecting Malicious Websites Based on the System Provenance Dependency Graph and GraphSAGE.

.- Research on Critical Node Identification and Resilience Optimization Strategies for Urban Infrastructure Systems Considering Disaster Vulnerability.

.- Modelling and Simulation of Social Systems.

.- Resilience Analysis of Chinese Supply Chain Network Based on Critical Point Theory of Cooperative Network.

.- A Study of Population Census System Based on Signaling Data: A Case Study with Greater Bay Area Data.

.- An Effective and Efficient Framework for Mining Top-k Regional Co-location Patterns.

.- Optimizing Trust Mechanisms in Humanitarian Relief Logistics: A Mixed Methods Approach.

.- Internet Intelligent Algorithm Governance.

.- Artificial Intelligence Rumor Debunking: Influencing Factors and Mechanisms of Usage Intention.

.- An Integrated Analysis of Online Public Opinion on School Bullying: Combining LDA Topic Modeling and Sentiment Analysis.

.- M/M/c Queueing Model with Priorities and Variable Matching Rates.

.- Deep Multi-view Clustering Based on Cross-view Consistency and Adaptive Feature Weighting Mechanism.

.- Social Network and Group Behavior.

.- Incremental Community Search in Dynamic Attributed Heterogeneous Information Networks.

.- A Key User Influence Discovery Model Based on Multipropagation Dimensions in Topic Network.

.- Understanding Cross-Platform Links in User Profiles: A Data-Driven Analysis on Mastodon.

.- Multilayer Network Dismantling Problem based on Genetic Evolution.

.- Social Bot Detection via Heterogeneous Graph Learning and Sample Balancing Strategies.

.- Cost-aware Hypergraph Dismantling via Spectral Bridge Identification.

.- The Impact of Online Argumentation Strategies on Audience Persuasion: the Moderating Effect of the Big Five Personality.

.- Innovation, Risks, and Security of Large Language Models.

.- Causal Correlation-Driven Dynamic Weighting with Large Language Models for Aero-Engine Remaining Useful Life Prediction.

.- Risks of large language models misalignment: Multi-stakeholder obligations and governance.

.- Cultural Conflicts Between Generative AI and the Cultural Values of Language — User Acculturation Strategies.

.- Exploring Bias Formation Mechanisms in Legal LLMs from a Cognitive Science Perspective.

.- Artificial Intelligence and Cognitive Science.

.- Dual Contrastive Incomplete Multi-View Clustering with Clustering-Oriented Guidance.

.- Dust Image Recognition Based on Improved U-Net Model with Pyramid Structure.

.- Progressive Feature Contrastive and Self-Weighted Neighbor-masked Fusion for Multi-View Clustering.

.- Spatio-Temporal Graph Representation Learning for POI Recommendation.

.- Big Five Personality Traits and State-Level Disparities in Mental Health Outcomes: Differential Associations with Substance Abuse and Mental Disorders.

.- Applications of Large Language Models in Societal Contexts.

.- Large Language Models are Great sEMG-Based Hand Gesture Recognizers.

.- Medical Staff Personal Protective Equipment Detection Network via Global Information and Multi-path Feature Fusion.

.- A Detection Method for the Dismantling Sequence of Protective Equipment for Medical Staff Based on Video Segmentation.

.- Between Life and Death: A Computational Analysis of AI Resurrection Discourse on Chinese Social Media.

.- Generative AI for Mental Health Education: A Comparison of ChatGPT and DeepSeek.

.- Social Geography and Urban Computing.

.- HeteroMoE: Spatio-temporal Heterogeneity Learning via Gated Mixture-of-Experts Networks.

.- Regional Personality and Life Outcomes in the USA: A State-Level Correlational Analysis.

.- Why Do Pro-Environmental Behaviors Diverge Between China and the West? — A Bibliometric Study Based on CiteSpace.

.- PM2.5 Dispersion Path Prediction Model Based on Spatio-Temporal Attention Network.

.- State-level Insights into Personality and Well-being: A Correlational Analysis Based on a Large U.S. Sample.

.- STMGNN: A Spatio-Temporal Graph Model with Mamba for Long-term Traffic Flow Forecasting.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.