Memmi / Yang / Qiu | Knowledge Science, Engineering and Management | Buch | 978-3-031-10982-9 | sack.de

Buch, Englisch, Band 13368, 753 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g

Reihe: Lecture Notes in Computer Science

Memmi / Yang / Qiu

Knowledge Science, Engineering and Management

15th International Conference, KSEM 2022, Singapore, August 6-8, 2022, Proceedings, Part I
1. Auflage 2022
ISBN: 978-3-031-10982-9
Verlag: Springer International Publishing

15th International Conference, KSEM 2022, Singapore, August 6-8, 2022, Proceedings, Part I

Buch, Englisch, Band 13368, 753 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-10982-9
Verlag: Springer International Publishing


The three-volume sets constitute the refereed proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022, held in Singapore, during August 6–8, 2022. 
The 169 full papers presented in these proceedings were carefully reviewed and selected from 498 submissions. The papers are organized in the following topical sections:
Volume I: Knowledge Science with Learning and AI (KSLA)
Volume II: Knowledge Engineering Research and Applications (KERA)
Volume III: Knowledge Management with Optimization and Security (KMOS)
Memmi / Yang / Qiu Knowledge Science, Engineering and Management jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Knowledge Science with Learning and AI (KSLA).- A decoupled YOLOv5 with deformable convolution and multi-scale attention.- OTE: An Optimized Chinese Short Text Matching Algorithm based on External Knowledge.- KIR: A Knowledge-enhanced Interpretable Recommendation Method.- ICKEM: a tool for estimating one's understanding of conceptual knowledge.- Cross-perspective Graph Contrastive Learning.- A Multi-scale Convolution and Gated Recurrent Unit Based Network for Limit Order Book Prediction.- Pre-train Unified Knowledge Graph Embedding with Ontology.- Improving Dialogue Generation with Commonsense Knowledge Fusion and Selection.- A Study of Event Multi-triple Extraction Methods Based on Edge-Enhanced Graph Convolution Networks.- Construction Research and Applications of Industry Chain Knowledge Graphs.- Query and Neighbor-aware Reasoning based Multi-hop Question Answering over Knowledge Graph.- Question Answering over Knowledge Graphs with Query Path Generation.- Improving ParkingOccupancy Prediction in Poor Data Conditions through Customization and Learning to Learn.- Knowledge Concept Recommender Based on Structure Enhanced Interaction Graph Neural Network.- Answering Complex Questions on Knowledge Graphs.- Multi-Attention User Information Based Graph Convolutional Networks for Explainable Recommendation.- Edge-shared GraphSAGE: A New Method of Buffer Calculation for Parallel Management of Big Data Project Schedule.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.