E-Book, Englisch, Band Volume 63, 345 Seiten, Web PDF
Membrane Proteins
1. Auflage 2003
ISBN: 978-0-08-049376-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 63, 345 Seiten, Web PDF
Reihe: Advances in Protein Chemistry
ISBN: 978-0-08-049376-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume covers 2 major topics: Foundations and Membrane Protein Structures. - Foundations - Bioenergetic Processes - Channels and Receptors
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;CONTENTS;6
3;PREFACE;12
4;Chapter 1. Membrane Protein Assembly in Vivo;18
4.1;I. Introduction;18
4.2;II. Overview of Membrane Protein Assembly Pathways in Prokaryotic and Eukaryotic Cells ;19
4.3;III. Membrane Protein Assembly in the ER;20
4.4;IV. Membrane Protein Assembly in Escherichia coli;26
4.5;V. Membrane Protein Assembly in Mitochondria;27
4.6;VI. Membrane Protein Assembly in Chloroplasts;29
4.7;VII. Membrane Protein Assembly in Peroxisomes;29
4.8;VIII. Conclusions;29
4.9;References;30
5;Chapter 2. Construction of Helix-Bundle Membrane Proteins;36
5.1;I. Introduction;36
5.2;II. Transmembrane Helix Structure;37
5.3;III. Thermodynamic Studies;41
5.4;IV. The Contribution of Loops versus Transmembrane Helices ;45
5.5;V. Forces That Stabilize Transmembrane Helix Interactions;46
5.6;VI. Conclusions;59
5.7;References;60
6;Chapter 3. Transmembrane ß-Barrel Proteins;64
6.1;I. Introduction;64
6.2;II. Structures;66
6.3;III. Construction Principles;72
6.4;IV. Functions;76
6.5;V. Folding and Stability;78
6.6;VI. Channel Engineering;80
6.7;VII. Conclusions;82
6.8;References;83
7;Chapter 4. Length, Time, and Energy Scales of Photosystems;88
7.1;I. Introduction;88
7.2;II. Overview of Length Scales in Bioenergetic Membranes ;89
7.3;III. Managing Lengths in Natural Redox Protein Design;92
7.4;IV. Managing Length and Size in Natural Light-Harvesting Design ;95
7.5;V. Managing Distance in Electron Transfer;99
7.6;VI. Managing Proton Reactions in Photosynthesis;110
7.7;VII. Managing Diffusion in Photosynthesis;120
7.8;VIII. Summary;122
7.9;References;123
8;Chapter 5. Structural Clues to the Mechanism of Ion Pumping in Bacteriorhodopsin;128
8.1;I. Introduction;128
8.2;II. The Ground, or Resting, State;132
8.3;III. Early Photocycle Intermediates (K and L);135
8.4;IV. M Intermediates;138
8.5;V. Large-Scale Conformational Changes in the M, N, and O Intermediates;140
8.6;VI. Protonation Pathways in the M to N and the N to O Reactions ;142
8.7;References;144
9;Chapter 6. The Structure of Wolinella succinogenes Quinol: Fumarate Reductase and Its Relevance to the Superfamily of Succinate:Quinone Oxidoreductases;148
9.1;I. Introduction;148
9.2;II. Overall Description of the Structure;151
9.3;III. The Hydrophilic Subunits;151
9.4;IV. Subunit C, the Integral Membrane Diheme Cytochrome b ;154
9.5;V. General Comparison of Membrane-Integral Diheme Cytochrome b Proteins;156
9.6;VI. Relative Orientation of Soluble and Membrane-Embedded QFR Subunits ;158
9.7;VII. The Site of Menaquinol Oxidation/Menaquinone Reduction;158
9.8;VIII. Electron and Proton Transfer and the Wolinella succinogenes Paradox;159
9.9;IX. The E-Pathway HypothesisŽ of Coupled Transmembrane Electron and Proton Transfer;162
9.10;X. Concluding Remarks;163
9.11;References;164
10;Chapter 7. Structure and Function of Quinone Binding Membrane Proteins;168
10.1;I. Introduction;168
10.2;II. Structure of Cytochrome bc1 Complex from Bovine Heart Mitochondria;170
10.3;III. The Structure of Cytochrome bo3 Ubiquinol Oxidase from Escherichia coli;182
10.4;IV. Conclusion;191
10.5;References;191
11;Chapter 8. Prokaryotic Mechanosensitive Channels;194
11.1;I. Introduction;194
11.2;II. MscL: Structure and Mechanism;202
11.3;III. MscS and Other Prokaryotic Mechanosensitive Channels;217
11.4;IV. What Makes a Mechanosensitive Channel Mechanosensitive?;221
11.5;V. Concluding Remarks;222
11.6;References;223
12;Chapter 9. The Voltage Sensor and the Gate in Ion Channels;228
12.1;I. Introduction;228
12.2;II. The Voltage Sensor;229
12.3;III. The Channel Gate;245
12.4;References;255
13;Chapter 10. Rhodopsin Structure, Dynamics, and Activation: A Perspective from Crystallography, Site-Directed Spin Labeling, Sulfhydryl Reactivity, and Disulfide Cross-Linking;260
13.1;I. Introduction to Rhodopsin and Visual Signal Transduction;260
13.2;II. The Rhodopsin Crystal Structure: The Inactive State;266
13.3;III. Structure and Dynamics of Rhodopsin in Solutions of Dodecyl Maltoside: The Cytoplasmic Surface in the Inactive State;270
13.4;IV. Location of the Membrane–Aqueous Interface and the Structure of the Disk Membrane;291
13.5;V. Photoactivated Conformational Changes: The Rhodopsin Activation Switch;294
13.6;VI. Summary: The Mechanism of Rhodopsin Activation and Future Directions;302
13.7;References;303
14;Chapter 11. The Glycerol Facilitator GlpF, Its Aquaporin Family of Channels, and Their Selectivity;308
14.1;I. An Ancient and Long Recognized Channel;308
14.2;II. Three-Dimensional Structure of GlpF with Glycerol in Transit;312
14.3;III. The Basis for Selectivity through the Channel;316
14.4;IV. Roles of Conserved Residues: Functional and Structural;318
14.5;V. Stereoselective Preferences of GlpF among Linear Alditols;320
14.6;VI. Simulations and Rates of Glycerol Passing through the Channel;321
14.7;VII. Simulation and Rates of Water Passage through the GlpF (an AQP) Channel;322
14.8;VIII. Insulation against Proton Conduction in AQPs;324
14.9;IX. Quaternary Structure of GlpF (and AQPs);324
14.10;X. The Ion Channel in AQP6; a Possible Pore on the Fourfold Axis of AQPs?;326
14.11;XI. GlpF Channel Selectivity for Antimonite;326
14.12;XII. Selectivity against Passing Ions or an Electrochemical Gradient;326
14.13;XIII. The Various Contributions to Rejection of Proton Conductance;327
14.14;XIV. Selectivity for Glycerol versus Water;328
14.15;XV. Regulated Ion Channels Formed by Members of the AQP Family;329
14.16;References;330
15;AUTHOR INDEX;334
16;SUBJECT INDEX;354