Melnikova | Stochastic Cauchy Problems in Infinite Dimensions | Buch | 978-1-4822-1050-7 | sack.de

Buch, Englisch, 306 Seiten, Format (B × H): 236 mm x 159 mm, Gewicht: 574 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Melnikova

Stochastic Cauchy Problems in Infinite Dimensions

Generalized and Regularized Solutions
1. Auflage 2016
ISBN: 978-1-4822-1050-7
Verlag: Apple Academic Press Inc.

Generalized and Regularized Solutions

Buch, Englisch, 306 Seiten, Format (B × H): 236 mm x 159 mm, Gewicht: 574 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

ISBN: 978-1-4822-1050-7
Verlag: Apple Academic Press Inc.


Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory.

The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.

Melnikova Stochastic Cauchy Problems in Infinite Dimensions jetzt bestellen!

Zielgruppe


Researchers in stochastic differential equations and functional analysis; mathematical physicists; financial mathematicians.


Autoren/Hrsg.


Weitere Infos & Material


Well-Posed and Ill-Posed Abstract Cauchy Problems. The Concept of Regularization: Semi-group methods for construction of exact, approximated, and regularized solutions. Distribution methods for construction of generalized solutions to ill-posed Cauchy problems. Examples. Supplements. Infinite-Dimensional Stochastic Cauchy Problems: Weak, regularized, and mild solutions to Itô integrated stochastic Cauchy problems in Hilbert spaces. Infinite-dimensional stochastic Cauchy problems with white noise processes in spaces of distributions. Infinite-dimensional extension of white noise calculus with application to stochastic problems.


Irina V. Melnikova is a professor in the Institute of Mathematics and Computer Sciences at Ural Federal University. Her research interests include analysis, applied mathematics, and probability theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.