Meliot | Representation Theory of Symmetric Groups | E-Book | sack.de
E-Book

E-Book, Englisch, 682 Seiten

Reihe: Discrete Mathematics and Its Applications

Meliot Representation Theory of Symmetric Groups

E-Book, Englisch, 682 Seiten

Reihe: Discrete Mathematics and Its Applications

ISBN: 978-1-315-35385-2
Verlag: Taylor & Francis
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This book focuses on symmetric groups and representation theory. The symmetric group is a central object in discrete mathematics. It can be studied from a combinatorial, algorithmic, or algebraic viewpoint, and the results can be applied in a plethora of other fields, such as physics and computer science. This book is the most up-to-date one on the topic, bringing together new research and results.
Meliot Representation Theory of Symmetric Groups jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


I Symmetric groups and symmetric functions

Representations of finite groups and semisimple algebras

Finite groups and their representations

Characters and constructions on representations

The non-commutative Fourier transform

Semisimple algebras and modules

The double commutant theory

Symmetric functions and the Frobenius-Schur isomorphism

Conjugacy classes of the symmetric groups

The five bases of the algebra of symmetric functions

The structure of graded self-adjoint Hopf algebra

The Frobenius-Schur isomorphism

The Schur-Weyl duality

Combinatorics of partitions and tableaux

Pieri rules and Murnaghan-Nakayama formula

The Robinson-Schensted-Knuth algorithm

Construction of the irreducible representations

The hook-length formula

II Hecke algebras and their representations

Hecke algebras and the Brauer-Cartan theory

Coxeter presentation of symmetric groups

Representation theory of algebras

Brauer-Cartan deformation theory

Structure of generic and specialised Hecke algebras

Polynomial construction of the q-Specht modules

Characters and dualities for Hecke algebras

Quantum groups and their Hopf algebra structure

Representation theory of the quantum groups

Jimbo-Schur-Weyl duality

Iwahori-Hecke duality

Hall-Littlewood polynomials and characters of Hecke algebras

Representations of the Hecke algebras specialised at q = 0

Non-commutative symmetric functions

Quasi-symmetric functions

The Hecke-Frobenius-Schur isomorphisms

III Observables of partitions

The Ivanov-Kerov algebra of observables

The algebra of partial permutations

Coordinates of Young diagrams and their moments

Change of basis in the algebra of observables

Observables and topology of Young diagrams

The Jucys-Murphy elements

The Gelfand-Tsetlin subalgebra of the symmetric group algebra

Jucys-Murphy elements acting on the Gelfand-Tsetlin basis

Observables as symmetric functions of the contents

Symmetric groups and free probability

Introduction to free probability

Free cumulants of Young diagrams

Transition measures and Jucys-Murphy elements

The algebra of admissible set partitions

The Stanley-Féray formula and Kerov polynomials

New observables of Young diagrams

The Stanley-Féray formula for characters of symmetric groups

Combinatorics of the Kerov polynomials

IV Models of random Young diagrams

Representations of the infinite symmetric group

Harmonic analysis on the Young graph and extremal characters

The bi-infinite symmetric group and the Olshanski semigroup

Classification of the admissible representations

Spherical representations and the GNS construction

Asymptotics of central measures

Free quasi-symmetric functions

Combinatorics of central measures

Gaussian behavior of the observables

Asymptotics of Plancherel and Schur-Weyl measures

The Plancherel and Schur-Weyl models

Limit shapes of large random Young diagrams

Kerov’s central limit theorem for characters

Appendix

A Representation theory of semisimple Lie algebras

Nilpotent, solvable and semisimple algebras

Root system of a semisimple complex algebra

The highest weight theory


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.