Meira Jr. / Veloso | Demand-Driven Associative Classification | Buch | 978-0-85729-524-8 | sack.de

Buch, Englisch, 112 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 207 g

Reihe: SpringerBriefs in Computer Science

Meira Jr. / Veloso

Demand-Driven Associative Classification


2011
ISBN: 978-0-85729-524-8
Verlag: Springer

Buch, Englisch, 112 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 207 g

Reihe: SpringerBriefs in Computer Science

ISBN: 978-0-85729-524-8
Verlag: Springer


The ultimate goal of machines is to help humans to solve problems.
Such problems range between two extremes: structured problems for which the solution is totally defined (and thus are easily programmed by humans), and random problems for which the solution is completely undefined (and thus cannot be programmed). Problems in the vast middle ground have solutions that cannot be well defined and are, thus, inherently hard to program. Machine Learning is the way to handle this vast middle ground, so that many tedious and difficult hand-coding tasks would be replaced by automatic learning methods. There are several machine learning tasks, and this work is focused on a major one, which is known as classification. Some classification problems are hard to solve, but we show that they can be decomposed into much simpler sub-problems. We also show that independently solving these sub-problems by taking into account their particular demands, often leads to improved classification performance.

Meira Jr. / Veloso Demand-Driven Associative Classification jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction and Preliminaries.- Introduction.- The Classification Problem.- Associative Classification.- Demand-Driven Associative Classification.- Extensions to Associative Classification.- Multi-Label Associative Classification.- Competence-Conscious Associative Classification.- Calibrated Associative Classification.- Self-Training Associative Classification.- Ordinal Regression and Ranking.-  Conclusions and FutureWork.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.