E-Book, Englisch, 1284 Seiten
Meir CNS Cancer
1. Auflage 2009
ISBN: 978-1-60327-553-8
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
Models, Markers, Prognostic Factors, Targets, and Therapeutic Approaches
E-Book, Englisch, 1284 Seiten
Reihe: Cancer Drug Discovery and Development
ISBN: 978-1-60327-553-8
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Cancer Drug Discovery and Development;2
1.1;CNS Cancer;3
1.2;Foreword;6
1.3;Preface;8
1.4;Editor;10
1.5;Contents;12
1.6;Contributors;17
1.7;Color Plates;26
2;Part 1: Animal Models for Central Nervous Tumors;39
3;Modeling Gliomas Using PDGF-Expressing Retroviruses;40
3.1;1.1 The Utility of Animal Glioma Models;41
3.2;1.2 Comparing Retroviral Glioma Models to Other Model Systems;41
3.2.1;1.2.1 Transplantation of Glioma Cell-Lines;42
3.2.2;1.2.2 Transplantation of Primary Glioma Cells or Cancer Stem Cells;43
3.2.3;1.2.3 Glioma Models Using Genetically Engineered Mice (GEM);43
3.2.4;1.2.4 Retroviral Glioma Models;45
3.2.4.1;1.2.4.1 Using Retroviruses to Deliver Genetic Lesions to Discrete Cell Populations at a Specific Place and Time;45
3.2.4.2;1.2.4.2 PDGF as a Link Between Glial Progenitors and Gliomas;47
3.2.4.3;1.2.4.3 PDGF Retroviruses Drive the Formation of Tumors That Closely Resemble Human Gliomas;48
3.2.4.4;1.2.4.4 PDGF Drives Adult Glial Progenitors to form Malignant Gliomas;49
3.2.4.5;1.2.4.5 Using Retroviruses to Test the Effects of Multiple Genetic Lesions;52
3.2.4.6;1.2.4.6 Using Retroviral Models to Study Glioma Infiltration;52
3.2.4.7;1.2.4.7 Using Retroviral Models to Study Interactions Within the Brain Microenvironment;54
3.2.4.8;1.2.4.8 Using Retroviral Models for Preclinical Studies;56
3.3;References;59
4;Modeling Brain Tumors Using Avian Retroviral Gene Transfer;65
4.1;2.1 History;66
4.2;2.2 RCAS;67
4.3;2.3 Retroviral Life Cycle;68
4.4;2.4 Tv-a Transgenic Mice;70
4.5;2.5 Modeling Brain Tumors with RCAS/tv-a;71
4.5.1;2.5.1 Gliomas;72
4.5.2;2.5.2 Loss of Function, Knockouts, and Cre/lox;72
4.5.3;2.5.3 Medulloblastomas - SHH Signaling;74
4.6;2.6 Imaging, Stem Cell Niches, and Preclinical Trials;75
4.7;References;76
5;Using Neurofibromatosis Type 1 Mouse Models to Understand Human Pediatric Low-Grade Gliomas;80
5.1;3.1 Pediatric Low-Grade Glioma;81
5.2;3.2 Neurofibromatosis Type 1;82
5.2.1;3.2.1 NF1 Clinical Features;82
5.2.2;3.2.2 Brain Tumors in NF1;82
5.3;3.3 Mouse Models of NF1-Associated Optic Glioma;83
5.3.1;3.3.1 Growth Regulatory Pathways;83
5.3.2;3.3.2 Tumor Microenvironment;85
5.3.3;3.3.3 Preclinical Therapeutic Studies;88
5.4;3.4 Future Directions;90
5.5;References;91
6;Transgenic Mouse Models of CNS Tumors: Using Genetically Engineered Murine Models to Study the Role of p21-Ras in Glioblastoma Multiforme;95
6.1;4.1 Introduction;96
6.2;4.2 Embryonic Stem Cell Transgenesis to Generate Mouse Models;96
6.3;4.3 Genetically Engineered Murine Mouse Models (GEMs) of GBM;98
6.4;4.4 GFAP:12 V-HaRas Astrocytoma Model: Characterization of RasD7, RasB8;99
6.5;4.5 Study of Cooperative Interactions Between Ras Overexpression and Other Known Genetic Alterations in Human Astrocytomas;103
6.6;4.6 Identifying Novel GBM Modifier Genes Using the RasB8 GEM and Gene-Trapping;105
6.7;4.7 Ontogeny of Astrocytomas;107
6.8;4.8 Conclusions;108
6.9;References;109
7;Pten-Deficient Mouse Models for High-Grade Astrocytomas;111
7.1;5.1 Introduction;112
7.2;5.2 Pten-Null or Akt-Activated Mouse Models of High-Grade Astrocytoma;113
7.3;5.3 Pten-Heterozygous Mouse Models of High-Grade Astrocytoma;116
7.4;5.4 Discussion;118
7.5;References;122
8;The Nf1-/+; Trp53-/+cis Mouse Model of Anaplastic Astrocytoma and Secondary Glioblastoma: Dissecting Genetic Susceptibility to Brain Cancer;127
8.1;6.1 Introduction;128
8.2;6.2 Clinical History, Pathology, and Genetics of Astrocytomas;128
8.3;6.3 The NPcis Mouse Model of Astrocytoma/Glioblastoma;132
8.3.1;6.3.1 Histology of NPcis Astrocytomas;134
8.3.2;6.3.2 Molecular Biology of NPcis Astrocytomas;135
8.3.3;6.3.3 Tumor Cell Lines Derived from NPcis Astrocytomas;136
8.4;6.4 Factors Affecting Astrocytoma Susceptibility in NPcis Mice;137
8.4.1;6.4.1 The Effect of Parental Origin and Offspring Sex on NPcis Astrocytomas;137
8.4.2;6.4.2 The Effect of Background Polymorphisms on NPcis Astrocytomas;141
8.5;6.5 Application of the NPcis Model of Astrocytoma;142
8.5.1;6.5.1 Advantages of the NPcis Astrocytoma Model;142
8.5.2;6.5.2 Limitations of the NPcis Astrocytoma Model;144
8.6;6.6 Summary;146
8.7;References;147
9;Modeling Astrocytomas in a Family of Inducible Genetically Engineered Mice: Implications for Preclinical Cancer Drug Development;153
9.1;7.1 Introduction;154
9.2;7.2 In Vivo Modeling of Astrocytomas in Genetically Engineered Mice;155
9.2.1;7.2.1 Overview of Genetic Modeling of Diffuse Gliomas;155
9.2.2;7.2.2 Conditional, Inducible GEM of Astrocytomas;163
9.2.3;7.2.3 The Future of GEM Astrocytoma Models;168
9.3;7.3 Astrocytoma GEM Application in Translational and Preclinical Research;170
9.4;References;174
10;Human Brain Tumor Cell and Tumor Tissue Transplantation Models;180
10.1;8.1 Cell Culture-Based Approaches;181
10.2;8.2 Xenograft-Based Tumor Propagation;184
10.3;8.3 Intracranial vs. Subcutaneous Tumor Therapy Response Experiments;186
10.4;8.4 The Impact of Bioluminescence Imaging;188
10.5;8.5 Human Tumor Panels and Pre-Clinical Therapeutic Testing of Multiple Tumors;191
10.6;References;192
11;Transformed Human Brain Cells in Culture as a Model for Brain Tumors;195
11.1;9.1 Introduction;196
11.2;9.2 Early Developments;198
11.3;9.3 Modifiers of Transformation and Tumor Behavior;201
11.4;9.4 Answers and More Questions;204
11.5;9.5 New Approaches;207
11.6;9.6 Conclusions;208
11.7;References;209
12;Rat Glioma Models for Preclinical Evaluation of Novel Therapeutic and Diagnostic Modalities;213
12.1;10.1 Introduction;214
12.2;10.2 9L Gliosarcoma;217
12.3;10.3 T9 Glioma;221
12.4;10.4 C6 Glioma;222
12.5;10.5 F98 Gliomas;223
12.6;10.6 RG2 (or D74) Glioma;225
12.7;10.7 Avian Sarcoma Virus-Induced and RT-2 Gliomas;226
12.8;10.8 CNS-1 Glioma;227
12.9;10.9 BT4C Glioma;227
12.10;10.10 Concluding Comments;228
12.11;References;229
13;Neuro-oncogenesis Induced by Nitroso Compounds in Rodents and Strain-Specific Genetic Modifiers of Predisposition;238
13.1;11.1 Introduction;239
13.2;11.2 The Neuro-Oncogenic Effect of ENU and MNU;240
13.3;11.3 Characteristics of ENU- and MNU-Induced Nervous System Tumors;241
13.3.1;11.3.1 Histological Classification;241
13.3.2;11.3.2 Genetic Alterations;242
13.4;11.4 Determinants of ENU- and MNU-Induced Neuro-oncogenesis;243
13.4.1;11.4.1 Developmental Stage of the Nervous System at ENU Exposure;243
13.4.2;11.4.2 Doses and Route of Administration;244
13.4.3;11.4.3 Rodent Species and Strain;244
13.5;11.5 Genetics of Susceptibility and Resistance to ENU-Induced Neuro-oncogenesis and Analyses of the Underlying Phenotypes;245
13.5.1;11.5.1 Inheritance of Susceptibility to ENU-Induced MPNST Development;247
13.5.2;11.5.2 Identification and Characterization of Gene Loci Involved in Susceptibility or Resistance to ENU-Induced MPNST Development;247
13.5.3;11.5.3 Phenotypic Analyses of Effector Mechanisms Underlying Differential MPNST Risk;250
13.6;11.6 Conclusions;253
13.7;References;255
14;The Murine GL261 Glioma Experimental Model to Assess Novel Brain Tumor Treatments;258
14.1;12.1 The Murine GL261 Glioma Experimental Model;259
14.2;12.2 The Murine GL261 Glioma Experimental Model: Validation Studies for a Predictive Preclinical Model;260
14.3;12.3 Neuropathology;262
14.4;12.4 Tumor Biology;264
14.4.1;12.4.1 Invasion, Angiogenesis, and Hypoxia;264
14.4.2;12.4.2 Signaling Pathways;266
14.5;12.5 Neuroimaging and Neuroradiology;267
14.6;12.6 Significance of GL261 Glioma Animal Model for Use as a Predictive Preclinical Model;268
14.7;References;270
15;Spontaneous Occurrence of Brain Tumors in Animals: Opportunities as Preclinical Model Systems;273
15.1;13.1 Introduction;274
15.2;13.2 Drosophila and Cancer Research;275
15.2.1;13.2.1 Drosophila Brain Tumor (brat) Gene;276
15.3;13.3 Zebrafish: A New Model of Nervous System Tumorigenesis?;280
15.4;13.4 Mouse and Rat Models of Brain Tumors;281
15.4.1;13.4.1 The 4C8 Mouse Glioma Syngeneic Graft Model;281
15.4.2;13.4.2 The Spontaneous VM/Dk Murine Astrocytoma;282
15.4.2.1;13.4.2.1 Cytological Characteristics;282
15.4.2.2;13.4.2.2 Biological Characteristics;282
15.4.3;13.4.3 Rat Brain Tumor Models;283
15.5;13.5 Spontaneous Brain Tumors in Dogs;284
15.5.1;13.5.1 Epidemiology and Pathology;285
15.5.1.1;13.5.1.1 Canine Meningiomas;287
15.5.1.2;13.5.1.2 Canine Astrocytomas;288
15.5.1.3;13.5.1.3 Canine Glioblastoma Multiforme;289
15.5.1.4;13.5.1.4 Canine Oligodendrogliomas;294
15.5.1.5;13.5.1.5 Canine Choroid Plexus Papillomas;294
15.5.2;13.5.2 Prognosis and Treatment for Canine CNS Tumors;294
15.5.3;13.5.3 Canine Brain Tumor Experimental Treatment Trials;298
15.5.3.1;13.5.3.1 Immunotherapy;298
15.5.3.2;13.5.3.2 Gene Therapy;298
15.5.3.3;13.5.3.3 Convection-Enhanced Delivery;298
15.5.4;13.5.4 Canine Glioma Cell Lines;299
15.5.5;13.5.5 Problems and Challenges with the Use of Spontaneous Canine Brain Tumors;300
15.6;13.6 Summary;300
15.7;References;301
16;Part 2: Prognostic Factors and Biomarkers;311
17;p53 Pathway Alterations in Brain Tumors;312
17.1;14.1 Introduction;313
17.2;14.2 The p53 Family;314
17.3;14.3 p53 Functions: Intracellular Effects;314
17.3.1;14.3.1 p53 and Cell Cycle Arrest;315
17.3.2;14.3.2 p53 and Apoptosis;316
17.3.3;14.3.3 p53 Regulation of Cellular Senescence;317
17.3.4;14.3.4 p53 and the Mechanisms Maintaining Genomic Integrity;318
17.3.5;14.3.5 p53 and MicroRNA;319
17.3.6;14.3.6 p53 and Invasion/Motility;319
17.3.7;14.3.7 p53 in Differentiation, Development, and Aging;319
17.3.8;14.3.8 p53 and Aerobic Respiration and Glycolysis;320
17.4;14.4 p53 Function: Effects on the Tumor Microenvironment (p53 Extracellular Effects);320
17.4.1;14.4.1 p53 and Angiogenesis;321
17.4.2;14.4.2 p53 and the Immune Response;322
17.5;14.5 p53 Regulation;322
17.5.1;14.5.1 The p14ARF/MDM2/p53 Pathway;323
17.5.2;14.5.2 Phosphorylation;324
17.5.3;14.5.3 Acetylation;325
17.5.4;14.5.4 Subcellular Localization;325
17.6;14.6 TP53 Mutations in Brain Tumors;326
17.6.1;14.6.1 p53 Mutation Spectrum in Brain Tumors;326
17.6.2;14.6.2 Mutation Sites;328
17.6.3;14.6.3 Mechanism of Action of p53 Mutants;328
17.7;14.7 Mutant p53 as a Therapeutic Target;330
17.7.1;14.7.1 Reactivation of Mutant p53 by Structural Manipulations and Peptides;330
17.7.2;14.7.2 Small Molecules That Target Mutant p53;330
17.7.3;14.7.3 Gene Delivery of wt p53;331
17.7.4;14.7.4 Viral Therapy Specific for Tumor Cells with Mutant p53;331
17.8;14.8 Summary;332
17.9;References;332
18;The PTEN/PI3 Kinase Pathway in Human Glioma;344
18.1;15.1 Introduction;345
18.2;15.2 Pathway Activation: PI3K Signaling and Downstream Effectors;346
18.2.1;15.2.1 Class 1 PI3Ks;346
18.3;15.3 Upstream Activation of PI3K by RTK Signaling;348
18.3.1;15.3.1 Epidermal Growth Factor Receptor;349
18.3.2;15.3.2 Platelet-Derived Growth Factor Receptor;349
18.3.3;15.3.3 Receptor Co-activation as a Mechanism of Therapeutic Resistance in Glioma;350
18.3.4;15.3.4 Ras;351
18.4;15.4 Regulation of Downstream PI3K Effectors;351
18.5;15.5 Mouse Models Defining the Function of Class 1 PI3Ks;354
18.6;15.6 Pathway Inhibition: PTEN;355
18.6.1;15.6.1 Loss of Heterozygosity of Chromosome 10 and the Search for Tumor Suppressor Genes;355
18.6.2;15.6.2 PTEN Discovery and Its Link to Genetic Syndromes;356
18.6.3;15.6.3 Lipid Phosphatase-Specific Functions of PTEN;357
18.6.4;15.6.4 Protein Phosphatase-Specific Functions of PTEN;358
18.6.5;15.6.5 Non-enzymatic Functions of PTEN;358
18.7;15.7 PTEN in Glioma Biology: Primary vs Secondary Glioma;359
18.8;15.8 PTEN Involvement in Brain Tumor Stem Cells;361
18.9;15.9 Transcriptional Regulation;362
18.10;15.10 Inactivation Mechanisms of PTEN;364
18.10.1;15.10.1 PTEN Loss and Mutation Spectrum in Glioma;364
18.10.2;15.10.2 Modulation of PTEN Function by Protein Modifications;364
18.10.3;15.10.3 MicroRNA Regulation of PTEN Expression;366
18.11;15.11 PTEN Localization;366
18.12;15.12 Other Regulators of Akt Activity;367
18.13;15.13 Mouse Glioma Models and PTEN Involvement;367
18.14;15.14 Therapeutic Intervention and Conditions for Resistance in Glioma and Breast Cancer: PTEN as a Marker for Drug Response and Resistance;368
18.15;15.15 Conclusions;369
18.16;References;370
19;Value of 1p/19q and Other LOH Markers for Brain Tumor Diagnosis, Prognosis, and Therapy;387
19.1;16.1 Introduction;388
19.2;16.2 1p/19q Loss Is Associated with Response to Therapy in Grade III Gliomas;388
19.3;16.3 Is There a Common Prognostic Denominator in GBM and ODG on Chromosome 1p?;389
19.4;16.4 The Search for 1p Glioma Suppressor Genes;390
19.5;16.5 The Search for 19q Glioma Suppressor Genes;391
19.6;16.6 Fine Mapping of the Deletions in the 1p Arm Reveals that Loss of the Centromeric 1p Region/Area Correlates with Survival in ODG and GBM;392
19.7;16.7 Gene Mapping Within the Chromosome 1 Pericentric Duplication;393
19.8;16.8 ROC Analysis for 1p and Prognosis Shows that N2/N2N Analysis Is Superior to Histology;394
19.9;16.9 An Oncogenic Role of Notch2 in Gliomagenesis?;396
19.10;16.10 Conclusion;397
19.11;References;398
20;Discovery of Genetic Markers for Brain Tumors by Comparative Genomic Hybridization;401
20.1;17.1 Historical Perspective;401
20.2;17.2 General Methodology;403
20.3;17.3 Interpretation of aCGH Data;407
20.4;17.4 Strategy for Identifying Genetic Markers with Clinical Relevance Using Array CGH;408
20.5;17.5 New Insights in Primary Brain Tumors Using Array CGH;412
20.6;17.6 Array CGH in Cancer Subgroup and Gene Discovery;416
20.7;17.7 Useful Resources;418
20.8;References;419
21;Genomic Identification of Significant Targets in Brain Cancer;423
21.1;18.1 Introduction;424
21.2;18.2 Key Features of the GISTIC Algorithm;426
21.3;18.3 The Four Stages of the GISTIC: A Detailed View;427
21.4;18.4 Application of GISTIC to Glioma;430
21.5;18.5 Application of GISTIC to Other Cancers;435
21.6;18.6 Limitations and Future Modifications of the GISTIC Algorithm;436
21.7;References;438
22;Oncomodulatory Role of the Human Cytomegalovirus in Glioblastoma;442
22.1;19.1 Human Cytomegalovirus Background;444
22.1.1;19.1.1 HCMV Is Widely Prevalent and Persistently Infects Adult Human Stem Cells;444
22.1.2;19.1.2 HCMV and Human Malignant Gliomas;444
22.2;19.2 Oncomodulatory Properties of HCMV and Their Contribution to Glioma Pathogenesis;445
22.2.1;19.2.1 The Role of Inflammatory Chemokines and Chemokine Receptors;445
22.2.2;19.2.2 HCMV Immediate-Early (IE) Gene Products Dysregulate Cell Cycle Controls, Are Mutagenic, Are Anti-Apoptotic, and Promote Oncogenic Transformation;446
22.2.3;19.2.3 HCMV Infection Modulates Cell Proliferation and Cell Survival Signaling Pathways;447
22.2.4;19.2.4 HCMV Infection Modulates Cellular Pathways that Promote Cell Migration and Invasion;447
22.2.5;19.2.5 HCMV Promotes Angiogenesis;448
22.2.6;19.2.6 HCMV Strain Variability and Gene Expression Patterns Influence Viral Neurotropism;448
22.3;19.3 HCMV Reactivation in Patients with Malignant Gliomas: The Role of the Immune System and Lessons from Animal Models;449
22.3.1;19.3.1 The Impact of the Immunosuppressed Status of GBM Patients on HCMV Reactivation;449
22.3.2;19.3.2 Reactivation of CMV During Neural Precursor Differentiation: Evidence from Mouse Models;450
22.3.3;19.3.3 HCMV Infection Can Arrest Differentiation of Stem Cells;450
22.4;19.4 The Glioma Cell of Origin: The Role of Glioma Stem-Like Cells;450
22.4.1;19.4.1 Glioma Stem Cells;450
22.4.2;19.4.2 Evidence for a Role of HCMV IE1 Expression in Glioma Stem-Like Cells;452
22.5;19.5 The Role of PDGF/PDGFRalpha Signaling in Gliomagenesis;453
22.5.1;19.5.1 The PDGF/PDGFR System Is Genetically Altered in GBMs;453
22.5.2;19.5.2 PDGFRalpha Is a Required Cellular Receptor for HCMV;454
22.6;19.6 Evidence in Support of a Role for HCMV-Induced Oncogenesis by Activation of Human PDGFRalpha;457
22.6.1;19.6.1 PDGFRalpha and HMCV IE1 Co-localize in Primary Human GBM Tissues and Cells;457
22.6.2;19.6.2 HCMV Promotes Glioma Cell Invasiveness by Engaging PDGFRalpha and the alphavbeta3 Integrin;458
22.6.3;19.6.3 Mechanisms of HCMV-Induced Oncogenesis in Human Adult Neural Precursor Cells;458
22.7;19.7 HCMV Association with Glioblastoma: Implications for Cancer Prevention, Detection, and Therapy;460
22.7.1;19.7.1 HCMV Association with Glioblastoma: Cause or Consequence?;460
22.7.2;19.7.2 Clinical Impact of HCMV Association with Glioblastoma: Implications for Cancer Prevention, Detection, Screening, and Treatment;461
22.8;19.8 Summary;461
22.9;References;463
23;Aberrant EGFR Signaling in Glioma;468
23.1;20.1 DeltaEGFR;468
23.2;20.2 Other Glioma-Associated Mutations of the EGFR;472
23.3;20.3 Clinical Significance of EGFR Abnormalities: Biomarker and Target;473
23.4;20.4 EGFR Localization Beyond the Plasma Membrane;476
23.5;References;480
24;Mechanisms of Brain Tumor Angiogenesis;487
24.1;21.1 Angiogenesis in Brain Tumors;488
24.1.1;21.1.1 Neovascularization as an Independent Prognostic Marker for Brain Tumors;489
24.1.2;21.1.2 How Angiogenesis Occurs in Brain Tumors;490
24.1.3;21.1.3 Morphology of Neo-Vessels and Blood-Brain Barrier (BBB) in Gliomas;491
24.2;21.2 Regulation in Brain Tumor Angiogenesis;491
24.2.1;21.2.1 VEGF-A and Its Isoforms;493
24.2.2;21.2.2 Other VEGF Family Members;494
24.2.3;21.2.3 VEGF Receptors (VEGFR);496
24.2.4;21.2.4 VEGFR-Mediated Signaling;497
24.2.5;21.2.5 Angiopoietins;501
24.2.6;21.2.6 Tie2-Mediated Signaling;503
24.2.7;21.2.7 Interaction Between Angiopoietins and Integrins;504
24.2.8;21.2.8 PDGF and Their Receptors;505
24.2.9;21.2.9 Other Growth Factors and Their Receptors: HGF/c-Met;506
24.2.10;21.2.10 FGF/FGFR;506
24.2.11;21.2.11 TGF-beta;507
24.2.12;21.2.12 Integrins;507
24.2.13;21.2.13 Interleukin-8 (IL-8);508
24.2.14;21.2.14 Nitric Oxide (NO);508
24.2.15;21.2.15 Hypoxia in Brain Tumor Angiogenesis;509
24.2.16;21.2.16 Hypoxia-Inducible Factor-1 (HIF-1);509
24.2.17;21.2.17 Induction of Angiogenic Inhibitors by Tumor Suppressor Genes;511
24.2.18;21.2.18 Contribution of Tumor Angiogenesis by Stem Cell-Like Glioma Cells;511
24.2.19;21.2.19 Anti-angiogenic Therapy of Brain Tumors: Clinical Applications and Challenges;512
24.3;21.3 Summary;513
24.4;References;513
25;Vaso-occlusive Mechanisms that Intiate Hypoxia and Necrosis in Glioblastoma: The Role of Thrombosis and Tissue Factor;533
25.1;22.1 Introduction;534
25.2;22.2 Distinctive Features of Glioblastoma;534
25.3;22.3 The Significance of Pseudopalisades, Necrosis, and Hypoxia;538
25.4;22.4 Vascular Pathology Underlies Hypoxia, Necrosis, and Pseudopalisades;539
25.5;22.5 Initiators of Vascular Pathology;540
25.6;22.6 Intravascular Thrombosis Accentuates and Propagates Tumor Hypoxia;540
25.7;22.7 Tissue Factor, a Potent Pro-Coagulant, Is Upregulated in GBM;541
25.8;22.8 PTEN, EGFR, and Hypoxia Regulate Tissue Factor Expression in GBM;542
25.9;22.9 TF Intitiates Signaling Through Its Cytoplasmic Tail and Through PARs;546
25.10;22.10 Angiogenesis Supports Peripheral Tumor Growth;547
25.11;22.11 Conclusion;549
25.12;References;549
26;Transcription Profiling of Brain Tumors: Tumor Biology and Treatment Stratification;555
26.1;23.1 Microarray Profiling;556
26.2;23.2 Expression Profiling in Human Brain Tumors;559
26.3;23.3 Expression Profiling of Human Gliomas;561
26.4;23.4 Molecular Subtypes of Infiltrating Gliomas;565
26.5;23.5 Stem-Cell Biomarkers;566
26.6;23.6 The Future of Profiling: Multiplatform Integration;567
26.7;23.7 Conclusions;568
26.8;References;568
27;Proteomic Profiling of Human Brain Tumors;578
27.1;24.1 Background;579
27.2;24.2 Protein Separation;580
27.2.1;24.2.1 Two-Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE);580
27.2.2;24.2.2 Two-Dimensional Difference Gel Electrophoresis (2D DIGE);582
27.2.3;24.2.3 Liquid Chromatography (LC);583
27.3;24.3 MS-Based Protein Identification;584
27.3.1;24.3.1 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS);585
27.3.2;24.3.2 Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS);586
27.4;24.4 Tissue Microarray (TMA);588
27.5;24.5 Protein and Antibody Array Analysis;589
27.6;24.6 Conclusion;593
27.7;References;596
28;Proteomic Discovery of Biomarkers in the Cerebrospinal Fluid of Brain Tumor Patients;601
28.1;25.1 Introduction;602
28.2;25.2 Why Proteomics?;602
28.3;25.3 Cerebrospinal Fluid as a Biomarker Repository;603
28.3.1;25.3.1 Composition of the CSF;603
28.3.2;25.3.2 Significance of CNS Barriers;606
28.4;25.4 CSF Proteomics for the Identification of CNS Neoplasia;608
28.4.1;25.4.1 The Promise of CSF Proteomics: The Identification of Markers of CNS Neoplasia for Patient Diagnosis, Prognosis, and Follow-Up After Therapy;608
28.4.2;25.4.2 Proteomic Methods for CSF Profiling;609
28.4.2.1;25.4.2.1 1-D and 2-D Gel Electrophoresis;611
28.4.2.2;25.4.2.2 Preparative 2-D Liquid-Phase Electrophoresis;613
28.4.2.3;25.4.2.3 MS Identification of 2-DE-Separated Proteins;613
28.4.3;25.4.3 Quantitative Proteomics;614
28.4.4;25.4.4 Initial Results and First Biomarker Panel for Brain Tumor CSF;615
28.4.5;25.4.5 Lessons Learned from Initial CSF Proteomic Studies;618
28.5;25.5 Importance of Experimental Design in CSF Proteomics;619
28.5.1;25.5.1 Accounting for Individual Variation Through Appropriate Biostatistical Design;619
28.5.2;25.5.2 Sample Selection and Processing;620
28.5.2.1;25.5.2.1 Prefractionation and Depletion of CSF;622
28.5.2.2;25.5.2.2 Preparation of CSF Samples;622
28.6;25.6 Data Analysis and Validation;623
28.7;25.7 Future Directions;624
28.7.1;25.7.1 Glyco-/Phospho Proteomics;624
28.7.2;25.7.2 Protein and Peptide Arrays;625
28.7.3;25.7.3 Antibody Arrays;625
28.7.4;25.7.4 Biomarker Panel;626
28.8;25.8 Conclusion;626
28.9;References;634
29;Epigenetic Profiling of Gliomas;638
29.1;26.1 A Central Role for Epigenetics in Biology;639
29.1.1;26.1.1 DNA Methylation and DNA Methyltransferases;639
29.1.2;26.1.2 Histone Modifications;640
29.1.3;26.1.3 Other Potential Epigenetic Factors;641
29.1.4;26.1.4 Epigenetic Regulation of Promoter CpG Islands;642
29.1.5;26.1.5 Functions of DNA Methylation;643
29.1.6;26.1.6 Environment and Epigenetics;644
29.1.7;26.1.7 Epigenetic Regulation in the CNS;645
29.1.8;26.1.8 Role of DNA Methyltransferases in the CNS;645
29.2;26.2 Epigenetic Dysregulation in Cancer;646
29.2.1;26.2.1 DNA Hypomethylation in Cancer;646
29.2.2;26.2.2 DNA Hypermethylation in Cancer;647
29.2.3;26.2.3 Histone Code Modifications and Cancer;648
29.2.4;26.2.4 Nucleosome Positioning Alterations in Cancer;649
29.2.5;26.2.5 Causes of Epigenetic Modifications in Cancer;649
29.2.6;26.2.6 Environmental Factors Affecting Epigenetic Modifications in Cancer;650
29.3;26.3 Epigenetic Dysregulation in Gliomas;651
29.3.1;26.3.1 Overview of Epigenetic Alterations in Gliomas;651
29.3.2;26.3.2 Epigenetic Silencing of MGMT and Drug Resistance to Alkylating Agents;652
29.3.3;26.3.3 Patterns of Epigenetic Alterations in Gliomas;653
29.3.4;26.3.4 Epigenetics of Glioma Tumor Initiating Cells;654
29.3.5;26.3.5 Identification of Genome-Wide Methylation Patterns in Brain Tumors;655
29.3.6;26.3.6 Aberrant Expression of MicroRNAs in Gliomas;656
29.4;26.4 Targeting Epigenetic Events for Therapy in Gliomas;656
29.4.1;26.4.1 Overview of Epigenetic Therapy for Gliomas;656
29.4.2;26.4.2 Histone Deacetylase (HDAC) Inhibitors for Glioma Treatment;657
29.4.3;26.4.3 Epigenetic Marks as Biomarkers for Clinical Evaluation;659
29.5;26.5 Future Directions for Epigenetics of Gliomas;660
29.6;References;661
30;MicroRNAs in the Central Nervous System and Potential Roles of RNA Interference in Brain Tumors;674
30.1;27.1 Introduction;675
30.2;27.2 miRNA and siRNA Background;675
30.3;27.3 MicroRNAs in CNS Development and Function;678
30.4;27.4 Individual MicroRNAs in the CNS;679
30.5;27.5 MicroRNAs in Cancer;680
30.6;27.6 MicroRNAs in Brain Tumors;683
30.6.1;27.6.1 Oncogenic miRNAs in Brain Tumors;684
30.6.2;27.6.2 miRNAs with Tumor Suppressor Properties in Brain Tumors;686
30.7;27.7 Potential miRNA- and siRNA-Based Therapies for Brain Tumors;687
30.7.1;27.7.1 Delivery of siRNAs or miRNAs as Therapy;687
30.7.2;27.7.2 Oncogenic miRNA-Based Therapies;688
30.7.3;27.7.3 Tumor-Suppressive miRNA-Based Therapies;688
30.7.4;27.7.4 Indirect miRNA-Based Strategies for Brain Tumor Therapy;689
30.8;27.8 Conclusion;690
30.9;References;691
31;Of Escherichia coli and Man: Understanding Glioma Resistance to Temozolomide Therapy;701
31.1;28.1 Introduction;702
31.2;28.2 Temozolomide (TMZ): Chemical Properties;703
31.3;28.3 Repair of Temozolomide-Induced DNA Damage in E. coli;703
31.3.1;28.3.1 N7-Methyl Guanine;703
31.3.2;28.3.2 N3-Methyl Adenine;705
31.3.3;28.3.3 N3-Methyl Cytosine;708
31.3.4;28.3.4 O6-Methyl Guanine;708
31.4;28.4 Evolutionarily Conserved Temozolomide Resistance Mechanisms;712
31.4.1;28.4.1 N7-Methyl Guanine;713
31.4.2;28.4.2 N3-Methyl Adenine;714
31.4.3;28.4.3 N3-Methyl Cytosine;714
31.4.4;28.4.4 O6-Methyl Guanine;715
31.4.5;28.4.5 MMR and DNA Damage Checkpoint Activation;717
31.4.6;28.4.6 Fanconi Anemia (FA) DNA Repair Pathway;719
31.5;28.5 Temozolomide Resistance Mechanism Unique to Higher Eukaryotes;721
31.5.1;28.5.1 p53;721
31.5.2;28.5.2 Autophagy;722
31.6;28.6 Conclusion;723
31.7;References;725
32;Brain Tumor Stem Cell Markers;734
32.1;29.1 Introduction;735
32.2;29.2 Tumor Stem Cell Markers;736
32.3;29.3 Prominin-1/CD133;738
32.4;29.4 Nestin;740
32.5;29.5 Bmi1;740
32.6;29.6 Musashi1;741
32.7;29.7 Notch;741
32.8;29.8 Sox2;741
32.9;29.9 A2B5;742
32.10;29.10 Other Potential Brain Tumor Stem Cell Markers;742
32.11;29.11 Perspectives;742
32.12;29.12 Conclusions;743
32.13;References;743
33;Part 3: Therapeutic Targets and Targeting Approaches;750
34;Clinical Agents for the Targeting of Brain Tumor Vasculature;751
34.1;30.1 Introduction;752
34.2;30.2 Angiogenesis in Gliomas;752
34.3;30.3 Antibodies to Growth Factors/Receptors;755
34.3.1;30.3.1 Bevacizumab (Avastin);756
34.3.2;30.3.2 Aflibercept (VEGF-Trap);757
34.4;30.4 Tyrosine Kinase Inhibitors;757
34.4.1;30.4.1 Cediranib (Recentin);757
34.4.2;30.4.2 Vatalanib;758
34.4.3;30.4.3 Other TKIs;758
34.5;30.5 Resistance to Anti-VEGF Therapy;759
34.6;30.6 Toxicities of Anti-VEGF Agents;759
34.7;30.7 VEGF-Inhibitors as Anti-edema Therapies;760
34.8;30.8 Assessing Glioblastoma Response and Progression with Anti-VEGF Therapies;761
34.9;30.9 Future Role of Anti-VEGF Agents in the Therapy of Glioblastoma;762
34.10;References;763
35;Bone Marrow-Derived Cells in GBM Neovascularization;768
35.1;31.1 Introduction;769
35.1.1;31.1.1 Neovascularization Is a Prerequisite for Tumor Progression;769
35.1.2;31.1.2 Tumor Neovascularization Is Driven by Angiogenic and Vasculogenic Mechanisms;770
35.2;31.2 Bone Marrow-Derived Cells Contribute to Neovascularization in GBM;771
35.2.1;31.2.1 Vascular Progenitor Cells;773
35.2.1.1;31.2.1.1 Endothelial Progenitor Cells (EPC);774
35.2.1.2;31.2.1.2 Pericyte Progenitor Cells (PPC);778
35.2.2;31.2.2 Proangiogenic Myeloid Support Cells;779
35.2.2.1;31.2.2.1 Tumor-Associated Macrophages (TAM);780
35.2.2.2;31.2.2.2 TIE2-Expressing Monocytes (TEM);782
35.2.2.3;31.2.2.3 VEGFR1+ CXCR4+ Hemangiocytes;783
35.2.2.4;31.2.2.4 Myeloid-Derived Suppressor Cells (MDSC);783
35.3;31.3 Conclusions;784
35.4;References;787
36;Vascular Targeting of Brain Tumors - Bridging the Gap with Phage Display;793
36.1;32.1 Introduction;794
36.2;32.2 The Principles of Phage Display;795
36.3;32.3 The Blood-Brain Barrier;797
36.4;32.4 Glioblastoma and Angiogenesis;798
36.5;32.5 Targeting of the Brain Tumors by Phage Display;799
36.6;32.6 Targeted Therapy and Imaging;800
36.6.1;32.6.1 AAVP, a Novel Hybrid Gene Delivery System;801
36.7;32.7 Conclusions;802
36.8;References;803
37;Impact of the Blood-Brain Barrier on Brain Tumor Imaging and Therapy;806
37.1;33.1 Introduction;807
37.2;33.2 Historical Beginnings of the BBB Concept;807
37.3;33.3 Structure and Function of the Blood-Brain Barrier;808
37.3.1;33.3.1 Renewed Emphasis on Understanding of the Blood-Brain Barrier;811
37.4;33.4 Importance of the BBB for Imaging of Brain Tumors;814
37.4.1;33.4.1 Angiogenesis and Permeability: Similarities and Differences;814
37.4.2;33.4.2 Permeability as a Surrogate Marker for Angiogenesis;814
37.4.3;33.4.3 T1-Weighted Imaging Techniques;815
37.4.4;33.4.4 Dynamic Susceptibility Contrast MR Imaging in Brain Tumor Assessment;818
37.4.5;33.4.5 Correlation of MR Perfusion Imaging with Angiographic and Histological Tumor Features;819
37.5;33.5 Importance of BBB for Therapy of Brain Tumors;820
37.5.1;33.5.1 Impact on Brain Tumor Therapy;820
37.5.2;33.5.2 Enhanced Transit of Agents across the Blood-Brain Barrier;821
37.5.3;33.5.3 Drug Dose Intensification;821
37.5.4;33.5.4 BBB Alteration to Allow Increased Drug Transport;821
37.5.5;33.5.5 Drugs with Increased Transport Capabilities Across the BBB;822
37.5.6;33.5.6 Local Delivery Techniques;823
37.5.7;33.5.7 Convection-Enhanced Delivery;823
37.5.8;33.5.8 Assessment of Drug Pharmacokinetics Within Brain Tissue;823
37.6;33.6 Summary;824
37.7;References;825
38;Targeting CXCR4 in Brain Tumors;829
38.1;34.1 Introduction;830
38.2;34.2 Classification of Chemokines and Their Receptors;831
38.3;34.3 History of CXCR4/CXCL12;833
38.4;34.4 Functions of CXCR4 in the Normal CNS;834
38.5;34.5 Involvement of CXCR4 in Non-CNS Cancers;836
38.6;34.6 Involvement of CXCR4 in Glioma;842
38.7;34.7 Involvement of CXCR4 in Medulloblastoma;843
38.8;34.8 Involvement of CXCR4 in Meningioma;844
38.9;34.9 Involvement of CXCR4 in Neuroblastoma;845
38.10;34.10 Concluding Remarks;846
38.11;References;847
39;Molecular Targeting of IL-13Ralpha2 and EphA2 Receptor in GBM;862
39.1;35.1 Molecularly Targeted Recombinant Cytotoxins for the Treatment of Brain Tumors;863
39.2;35.2 Targetable Molecular Fingerprints in GBM;865
39.2.1;35.2.1 Overexpression of IL-13Ralpha2 in GBM;865
39.2.2;35.2.2 Targeting IL-13Ralpha2 for Therapeutic Purposes;867
39.2.3;35.2.3 EphA2 Receptor in GBM;869
39.2.3.1;35.2.3.1 EphA2 Protein Expression in GBM Cells and Tumors;870
39.2.3.2;35.2.3.2 Function of EphA2 in GBM;872
39.2.3.3;35.2.3.3 Targeting EphA2 in GBM with EphrinA1-Based Cytotoxins;872
39.3;35.3 Summary;874
39.4;References;874
40;Molecular Targets for Antibody-Mediated Immunotherapy of Malignant Glioma;879
40.1;36.1 Introduction;879
40.2;36.2 Brain-Tumor Targets and Immunotherapeutic Antibodies;883
40.2.1;36.2.1 Tenascin;883
40.2.2;36.2.2 Epidermal Growth Factor Receptor and Its Variant III Form;890
40.2.3;36.2.3 Chondroitin Sulfate Proteoglycans;893
40.2.4;36.2.4 Other Molecular Targets of Interest;895
40.2.4.1;36.2.4.1 Gangliosides;895
40.2.4.2;36.2.4.2 Glycoprotein Nonmetastatic Melanoma Protein B;895
40.2.4.3;36.2.4.3 Multidrug Resistance Protein 3;897
40.2.4.4;36.2.4.4 Podoplanin;897
40.2.4.5;36.2.4.5 Neural Cell Adhesion Molecule;898
40.2.4.6;36.2.4.6 Vascular Endothelial Growth Factor;899
40.3;36.3 Perspective;899
40.4;36.4 Conclusion;901
40.5;References;902
41;Stat3 Oncogenic Signaling in Glioblastoma Multiforme;913
41.1;37.1 Introduction;914
41.2;37.2 Biology of Malignant Gliomas;915
41.3;37.3 Activated Stat3 Acts as an Oncoprotein;917
41.4;37.4 Stat3 Signaling Is Activated in GBM and Other Brain Tumors;917
41.5;37.5 Activated Stat3 Induces Proliferation and Survival of GBM Cells;918
41.6;37.6 Proangiogenic Activity of Stat3 in GBM;920
41.7;37.7 Immune Suppression by Stat3 in GBM;921
41.8;37.8 Antitumor Activity of Stat3 in GBM;922
41.9;37.9 Physiologic and Pharmacologic Inhibitors of Stat3;923
41.10;37.10 Perspectives;925
41.11;References;925
42;Inhibition of Ras Signaling for Brain Tumor Therapy;933
42.1;38.1 Introduction;934
42.2;38.2 p21-Ras Structure and Processing;934
42.3;38.3 Activation and p21-Ras Signaling;937
42.4;38.4 Mutated and Activated p21-Ras in Brain Tumors;938
42.5;38.5 Farnesyltransferase Inhibitors (FTIs) and Preclinical Studies;939
42.6;38.6 Alternative Methods to Target p21-Ras Signaling;941
42.7;38.7 p21-Ras Signaling in Non-glioma CNS Tumors;942
42.8;38.8 Conclusion;942
42.9;References;943
43;HGF/c-Met Signaling and Targeted Therapeutics in Brain Tumors;947
43.1;39.1 Introduction;948
43.2;39.2 c-Met and HGF Structure and Signal Transduction;948
43.2.1;39.2.1 Structure of HGF and c-Met;948
43.2.2;39.2.2 c-Met-Dependent Signal Transduction;949
43.3;39.3 Involvement of HGF/c-Met in Brain Tumors;951
43.3.1;39.3.1 Deregulation of HGF and c-Met in Brain Tumors;951
43.3.1.1;39.3.1.1 Mechanisms of HGF and c-Met Deregulation in Brain Tumors;951
43.3.1.2;39.3.1.2 HGF and c-Met Expression in Brain Tumors;952
43.3.1.3;39.3.1.3 HGF and c-Met Expression in Brain Tumor Endothelial Cells;953
43.3.2;39.3.2 Oncogenic Effects of c-Met Activation in Brain Tumors;953
43.3.2.1;39.3.2.1 Cell Proliferation;953
43.3.2.2;39.3.2.2 Cell Survival;954
43.3.2.3;39.3.2.3 Cell Migration and Cell Invasion;955
43.3.2.4;39.3.2.4 Angiogenesis;955
43.4;39.4 HGF and c-Met as Targets for Brain Tumor Therapy;956
43.4.1;39.4.1 U1snRNA/Ribozymes and Antisense;957
43.4.2;39.4.2 NK4;958
43.4.3;39.4.3 Soluble Met;959
43.4.4;39.4.4 Small-Molecule Inhibitors;959
43.4.5;39.4.5 Neutralizing Monoclonal Antibodies;960
43.5;39.5 Therapeutic Considerations;962
43.6;References;962
44;Combinatorial Therapeutic Strategies for Blocking Kinase Pathways in Brain Tumors;967
44.1;40.1 Introduction: From Single Genes to Biological Networks;968
44.2;40.2 Robustness in Oncogenic Signaling Networks;968
44.2.1;40.2.1 The Akt-mTOR Feedback Loop;969
44.2.2;40.2.2 EGFRvIII-PTEN Connection;971
44.2.3;40.2.3 The RAS-PI3K Crosstalk;972
44.3;40.3 Tools to Survey Signaling Networks in GBM;973
44.3.1;40.3.1 Revealing Novel Network Connections Through Mass Spectrometry;973
44.3.2;40.3.2 Understanding Chemoresistance Through the Use of Antibody Microarrays;975
44.3.3;40.3.3 Multiparameter Flow Cytometry as a Tool for Determining Oncogenic Networks in Cancer Stem Cell Populations;976
44.4;40.4 Combinatorial Targets from GBM Signaling Networks Through Integrative Analysis;977
44.5;40.5 Mechanistic Models and Computational Approaches to Drug Targets;980
44.6;40.6 Bench to Bedside - Can Integrative Strategies Be Extended to the Clinic?;981
44.7;40.7 Conclusions;983
44.8;References;984
45;Targeting of TRAIL Apoptotic Pathways for Glioblastoma Therapies;990
45.1;41.1 Introduction;991
45.2;41.2 Development of TNF Family Death Receptors Targeted Cancer Therapies;992
45.2.1;41.2.1 Toxicity in TNFR and Fas-Targeted Therapies;992
45.2.2;41.2.2 Controversy in TRAIL-Induced Toxicity;993
45.3;41.3 TRAIL-Induced Apoptotic Pathways in Human Cancer Cells;994
45.3.1;41.3.1 TRAIL-Induced DISC and Extrinsic Apoptotic Pathway;994
45.3.2;41.3.2 TRAIL-Induced Intrinsic Apoptotic Pathway;995
45.3.3;41.3.3 Caspase-8 in TRAIL-Induced Apoptosis;996
45.3.4;41.3.4 TRAIL-Induced Apoptosis in Glioblastoma Cells;996
45.4;41.4 TRAIL Resistance in Human Cancers;997
45.4.1;41.4.1 Decoy Receptors;997
45.4.2;41.4.2 DISC Modifications;998
45.4.3;41.4.3 NF-kappaB and ERK1/2 Pathways;999
45.4.4;41.4.4 Bcl-2 and IAP Family Proteins;1000
45.4.5;41.4.5 Cancer Genomics;1000
45.4.6;41.4.6 TRAIL Resistance in Glioblastomas;1001
45.5;41.5 Development of TRAIL-Based Combination Therapies;1002
45.5.1;41.5.1 Targeting of TRAIL Resistance in the DISC and Mitochondrial Pathway;1002
45.5.2;41.5.2 Targeting Oncogene-Driven Signaling Pathways;1003
45.5.3;41.5.3 Combination of TRAIL and Chemotherapy;1003
45.5.4;41.5.4 TRAIL-Based Combination Therapies for Glioblastomas;1004
45.6;41.6 Clinical Development of TRAIL Agonists for Cancer Therapies;1005
45.6.1;41.6.1 Clinical Trials of rhTRAIL;1005
45.6.2;41.6.2 Clinical Trials of DR4 and DR5 Agonistic Antibodies;1006
45.7;41.7 Development of TRAIL-Based Treatments of Glioblastomas;1007
45.7.1;41.7.1 TRAIL-Based Therapeutic Modalities;1008
45.7.2;41.7.2 Evaluation of Patient Glioblastomas in TRAIL-Based Treatments;1009
45.8;41.8 Conclusions and Future Directions;1009
45.9;References;1010
46;The NF-kappaB Signaling Pathway in GBMs: Implications for Apoptotic and Inflammatory Responses and Exploitation for Therapy;1023
46.1;42.1 NF-kappaB Family and Signaling Pathway;1024
46.2;42.2 NF-kappaB and Angiogenesis;1027
46.3;42.3 NF-kappaB and Cell Migration and Invasion;1028
46.4;42.4 NF-kappaB and Cellular Proliferation;1028
46.4.1;42.4.1 Cyclin D1, E, and CDK2;1028
46.4.2;42.4.2 c-Myc;1029
46.4.3;42.4.3 Interleukin-6;1029
46.5;42.5 NF-kappaB and Apoptosis;1030
46.6;42.6 Activation of NF-kappaB in Gliomas;1033
46.6.1;42.6.1 Immune Cell Infiltration;1033
46.6.2;42.6.2 The PI3K Pathway;1034
46.6.3;42.6.3 ING4;1034
46.6.4;42.6.4 Pin1;1035
46.6.5;42.6.5 PIAS Family;1036
46.6.6;42.6.6 Alternative Reading Frame (ARF);1036
46.6.7;42.6.7 DNA Damage and Reactive Oxygen Species (ROS);1036
46.7;42.7 Targeting NF-kappaB in Gliomas;1037
46.7.1;42.7.1 Proteasome Inhibitors;1038
46.7.2;42.7.2 IKK Inhibitors;1039
46.7.3;42.7.3 Antioxidants;1040
46.8;42.8 Conclusions;1041
46.9;References;1041
47;Targeting Endoplasmic Reticulum Stress for Malignant Glioma Therapy;1049
47.1;43.1 Introduction;1050
47.2;43.2 ER Stress Response (ESR);1050
47.3;43.3 Downregulation of the ER Chaperone GRP78 Results in Increased Glioma Cell Sensitivity to Temozolomide (TMZ);1053
47.4;43.4 ER Stress Modulation of Intracellular Calcium in Malignant Gliomas;1055
47.5;43.5 Induction of ER Stress by Affecting Protein Balance in the ER;1058
47.6;43.6 Combination Therapy by Affecting Multiple Targets Within the ER;1060
47.7;43.7 Potential Clinical Applications of ER Stress Modulation in Malignant Glioma Treatment;1061
47.8;43.8 Conclusion;1064
47.9;References;1064
48;Brain Cancer Stem Cells as Targets of Novel Therapies;1069
48.1;44.1 Introduction;1070
48.2;44.2 Defining Cancer Stem Cells;1070
48.3;44.3 Signaling Pathways as Drug Targets in Cancer Stem Cells;1071
48.3.1;44.3.1 Epidermal Growth Factor and PI(3)K Signaling;1072
48.3.2;44.3.2 Hedgehog Signaling;1073
48.3.3;44.3.3 Bone Morphogenic Protein Signaling;1074
48.3.4;44.3.4 Notch Signaling;1074
48.3.5;44.3.5 Platelet-Derived Growth Factor Signaling;1074
48.3.6;44.3.6 Additional CSC Regulators;1074
48.4;44.4 Targeting the Perivascular Stem Cell Niche;1075
48.5;44.5 Cancer Stem Cells and Niches in Therapeutic Resistance;1077
48.5.1;44.5.1 Cancer Stem Cells Are Resistant to Conventional Therapy;1077
48.5.2;44.5.2 Cancer Stem Cells Express High Levels of ABC Drug Transporters;1077
48.5.3;44.5.3 Cancer Stem Cells Have Augmented DNA Damage Repair Capacity;1078
48.5.4;44.5.4 The Perivascular Niche Contributes to Cancer Stem Cell Resistance to Therapy;1078
48.6;44.6 Cancer Stem Cells as Markers of Prognosis;1079
48.7;44.7 Imaging of Cancer Stem Cells;1079
48.8;44.8 Perspectives;1080
48.9;44.9 Summary;1081
48.10;References;1081
49;The Use of Retinoids as Differentiation Agents Against Medulloblastoma;1088
49.1;45.1 Introduction-Medulloblastoma (MB) as a Lapse of Proper Development;1089
49.1.1;45.1.1 Normal Cerebellum Development;1090
49.1.2;45.1.2 Mice with Dysregulated Shh Signaling Develop Desmoplastic/Nodular MB;1091
49.1.3;45.1.3 Wnt Pathway Activation in Classic MBs;1091
49.1.4;45.1.4 Notch Amplification and Overexpression in MBs;1092
49.1.5;45.1.5 OTX2 Amplification and Overexpression in Anaplastic MBs;1092
49.2;45.2 Endogenous Retinoid Function;1093
49.2.1;45.2.1 An Introduction to Retinoid Metabolism and Signal Regulation;1093
49.2.2;45.2.2 Retinoids Function by Activating Ligand-Activated Transcription Factors;1093
49.2.3;45.2.3 Endogenous Function of Retinoids During Embryonic Development;1094
49.2.4;45.2.4 A Focus upon ATRA Function in Cerebellar Development;1095
49.3;45.3 Therapeutic Application of Retinoids;1096
49.3.1;45.3.1 A Link Between Vitamin A Deficiency and Cancer;1096
49.3.2;45.3.2 Clinical Application of Retinoids;1097
49.3.3;45.3.3 Mechanisms of Retinoid Antitumor Activity;1098
49.3.4;45.3.4 Retinoid Therapy Targets Pathways Implicated in MB Tumorigenesis;1099
49.3.4.1;45.3.4.1 Variability of Retinoid Responsiveness Among MB Cell Lines Resulted in Disproportionately Negative Results in Early Studies;1101
49.3.4.2;45.3.4.2 ATRA Can Induce Reversible Differentiation and Chemosensitize MB Cells;1101
49.3.4.3;45.3.4.3 ATRA Can Introduce a Cell Cycle Blockade in an MB Cell Line;1102
49.3.4.4;45.3.4.4 Identifying a Predominantly Apoptotic Response to ATRA in Some MB Cell Lines;1102
49.3.4.5;45.3.4.5 Bmp2 Is a Functional Downstream Target of Retinoid Treatment in MB Cell Lines and Surgically Derived Primary Tumors;1103
49.3.4.6;45.3.4.6 ATRA Treatment Silences the Oncogene OTX2, Which Is Distinctly Expressed in Retinoid-Sensitive Cell Lines;1104
49.3.4.7;45.3.4.7 Development of Retinoid-Based Therapeutic Strategies in Preclinical Models;1105
49.3.4.8;45.3.4.8 A Synthetic Retinoid, Fenretinide, Induces Apoptosis in MBs via an RAR-Independent Effect;1106
49.3.4.9;45.3.4.9 Overview of Known Retinoid Targets in MB;1106
49.3.4.10;45.3.4.10 Strategies to Identify Mechanisms of Retinoid Resistance in MB Cell Lines;1107
49.3.4.11;45.3.4.11 Clinical Trials Utilizing Retinoid Treatment for MB;1108
49.4;45.4 Overview of Retinoid-Mediated Differentiation Therapy of MB;1108
49.5;References;1109
50;Herpes Simplex Virus 1 (HSV-1) for Glioblastoma Multiforme Therapy;1116
50.1;46.1 Introduction;1117
50.2;46.2 Basic Biology of HSV-1;1118
50.2.1;46.2.1 HSV-1 Structure and Genome;1118
50.2.2;46.2.2 HSV-1 Cell Entry;1119
50.2.3;46.2.3 HSV-1 Pathogenesis;1121
50.2.4;46.2.4 HSV-1 Gene Expression;1121
50.2.5;46.2.5 HSV-1 Latency;1122
50.2.6;46.2.6 HSV-1 Immediate-Early (IE) Proteins;1123
50.2.7;46.2.7 HSV-1 DNA Replication and Recombination;1124
50.2.8;46.2.8 HSV-1 Assembly and Release;1124
50.3;46.3 HSV-1 as a Gene Therapy Vector Against Malignant Gliomas;1125
50.3.1;46.3.1 HSV-1 Replication-Defective Mutants;1125
50.3.1.1;46.3.1.1 Generation of Replication-Deficient HSV-1 Viruses;1125
50.3.1.2;46.3.1.2 Replication-Defective HSV-1 in Malignant Glioma Therapy;1126
50.3.2;46.3.2 HSV-1 Replication-Conditional (Oncolytic) Viruses;1127
50.4;46.4 Combination Therapies with HSV-1 for Malignant Gliomas;1128
50.4.1;46.4.1 HSV-1 d106-Mediated Chemoradiosensitivity Enhancement in GBM;1129
50.4.1.1;46.4.1.1 ICP0 and Effects on Cell Metabolism;1130
50.5;46.5 Clinical Trials with HSV-1 Based Viruses for Malignant Glioma Therapy;1131
50.6;46.6 Limitations in the Treatment of Malignant Gliomas with HSV-Mediated Therapy;1133
50.6.1;46.6.1 Delivery;1133
50.6.2;46.6.2 Host Immune Response;1134
50.6.3;46.6.3 Safety;1134
50.7;46.7 Perspectives;1135
50.7.1;46.7.1 Tumor Targeting of HSV-1;1135
50.7.2;46.7.2 Chemo/Radiotherapy-Activated Transcriptional Targeting of Malignant Gliomas;1136
50.7.3;46.7.3 Imaging;1136
50.8;46.8 Summary;1136
50.9;References;1137
51;The Development of Targeted Cancer Gene-Therapy Adenoviruses for High-Grade Glioma Treatment;1148
51.1;47.1 Historic Background;1149
51.2;47.2 The Ad as a Cancer Therapy Agent;1149
51.2.1;47.2.1 Replication-Deficient Ads;1150
51.2.2;47.2.2 Tumor-Specific Replication-Competent Ads;1151
51.2.3;47.2.3 Advantages and Disadvantages of Using the Ad as a Cancer Therapy Agent;1154
51.3;47.3 Clinical Trials of Cancer Therapy Ads for Glioma Therapy;1155
51.3.1;47.3.1 Ad-HSV-TK Clinical Trials;1155
51.3.2;47.3.2 Ad-p53 Clinical Trial;1159
51.3.3;47.3.3 Ad-IFNbeta Clinical Trial;1159
51.3.4;47.3.4 E1B-55K-Deleted Oncolytic Ad (dl1520, ONYX-015) Clinical Trial;1160
51.3.5;47.3.5 Clinical Trial Data: Anti-Ad Neutralizing Antibody Levels;1160
51.3.6;47.3.6 Clinical Trial Data: Regional and Systemic Virus Dissemination;1161
51.3.7;47.3.7 Clinical Trial Data: Antitumor Efficacy;1161
51.4;47.4 Future Directions to Improve the Safety and Efficacy of Cancer Gene-Therapy and Oncolytic Ads for Glioma Therapy;1162
51.4.1;47.4.1 Preclinical Brain Tumor Models;1162
51.4.2;47.4.2 Improving the Virus Vectors;1164
51.4.3;47.4.3 Improving Virus Delivery, Intratumoral Dispersion, and Transduction of Tumor Cells;1165
51.4.4;47.4.4 Local and Systemic Host Immune Response;1166
51.4.5;47.4.5 Tracking Viral Replication in the Patient;1167
51.5;47.5 Summary;1168
51.6;References;1168
52;Harnessing T-Cell Immunity to Target Brain Tumors;1176
52.1;48.1 Introductory Remarks;1177
52.2;48.2 Immune Privilege and Cancer Immunosurveillance;1177
52.3;48.3 The Stages of Tumor Immunity;1178
52.3.1;48.3.1 The Tumor First Stimulates Innate Immune Sentinels, at the Site of the Malignancy;1179
52.3.1.1;48.3.1.1 Detection;1179
52.3.1.2;48.3.1.2 Innate Immune Functions;1180
52.3.2;48.3.2 The Induction of Adaptive Immune Responses Against Brain Tumors: From the Brain to the Lymph Node;1181
52.3.2.1;48.3.2.1 Generation of Naïve CD4 and CD8 T Cells;1181
52.3.2.2;48.3.2.2 Naïve T-Cell Activation Requires Two Signals;1182
52.3.2.3;48.3.2.3 How Does Antigen from the Tumor Site Reach the Naïve T Cells in the Lymph Node?;1183
52.3.2.4;48.3.2.4 Cell-Free Drainage of Antigen;1184
52.3.2.5;48.3.2.5 Cell-Mediated Transport of Antigen from the Brain to the Lymph Node;1184
52.3.3;48.3.3 The Effector Phase of the T-Cell Mediated Antitumor Response: From the Lymph Node to the Brain;1185
52.3.3.1;48.3.3.1 T-Cell Entry to the Brain and Antigen Specificity;1185
52.3.3.2;48.3.3.2 Antigen-Independent T-Cell Extravasation to the Brain;1186
52.3.3.3;48.3.3.3 Role of Integrins in CNS Tropism;1187
52.3.3.4;48.3.3.4 Role of Non-integrin Adhesion Molecules;1187
52.3.3.5;48.3.3.5 Role of Chemokines and Chemokine Receptors;1188
52.3.3.6;48.3.3.6 Suboptimal Trafficking of T Cells to Brain Tumors May Lead to Suboptimal Tumor Therapies;1189
52.3.4;48.3.4 The Effector Phase of the T-Cell Mediated Antitumor Response: At the Tumor Site;1190
52.3.4.1;48.3.4.1 CD8 T Cells;1190
52.3.4.2;48.3.4.2 CD4 T Cells;1191
52.4;48.4 Glioma Immune Escape;1191
52.4.1;48.4.1 Passive Immune Escape Mechanisms;1192
52.4.2;48.4.2 Active Immune Escape;1192
52.4.2.1;48.4.2.1 Soluble Immunosuppresive Molecules;1193
52.4.2.2;48.4.2.2 Cell Surface Immunosuppressive Factors;1193
52.4.2.3;48.4.2.3 Immunosuppressive Cells;1194
52.5;48.5 Identification of Glioma-Associated Antigens;1195
52.5.1;48.5.1 Identifying Tumor-Associated-Antigens (‘‘Reverse Immunology’’);1195
52.5.2;48.5.2 Microarray Technology and Tumor-Associated-Antigens;1196
52.6;48.6 Preclinical Studies of T-Cell Immunity to Target Brain Tumors;1197
52.6.1;48.6.1 Passive Immunotherapy;1197
52.6.1.1;48.6.1.1 Adoptive Transfer;1197
52.6.1.2;48.6.1.2 Cytokines;1198
52.6.1.3;48.6.1.3 Toll- Like Receptor Agonists;1198
52.6.2;48.6.2 Active Immunotherapy (Tumor Vaccines);1198
52.6.2.1;48.6.2.1 Dendritic Cell-Based Vaccines;1199
52.6.2.2;48.6.2.2 Adjuvants;1200
52.6.2.3;48.6.2.3 Blocking Regulatory T Cells (Tregs);1200
52.6.2.4;48.6.2.4 Immune Gene Therapy;1201
52.6.2.5;48.6.2.5 Bacterial/Viral-Based Vaccines;1201
52.7;48.7 Clinical Trials of Cellular Immunotherapy for Brain Tumors;1202
52.7.1;48.7.1 Lymphokine-Activated Killer Cells;1202
52.7.2;48.7.2 Cytotoxic T Lymphocytes;1202
52.7.3;48.7.3 Dendritic Cell Vaccination Trials;1203
52.7.4;48.7.4 Bacterial and Viral Tumor Vaccine Trials for Malignant Glioma;1207
52.8;48.8 Conclusion;1208
52.9;References;1215
53;Glioma Invasion: Mechanisms and Therapeutic Challenges;1229
53.1;49.1 Introduction;1230
53.2;49.2 Overview of Glioma Cell Invasion in the CNS;1230
53.3;49.3 Glioma Cell Microenvironment: Extracellular Matrix;1235
53.3.1;49.3.1 Neural ECM;1235
53.3.2;49.3.2 Basal Lamina;1239
53.4;49.4 Extracellular Remodeling and Glioma Invasion;1240
53.4.1;49.4.1 ECM Degradation;1240
53.4.2;49.4.2 ECM Synthesis;1244
53.5;49.5 Soluble Signals and Transduction Mechanisms in Glioma Invasion;1247
53.5.1;49.5.1 Chemoattractants;1247
53.5.2;49.5.2 Chemorepellents;1249
53.6;49.6 Targeting Strategies Against Glioma Cell Invasion;1250
53.7;References;1254
54;Index;1263




