Mehrotra / Huang / Mohan | Anomaly Detection Principles and Algorithms | Buch | 978-3-319-88445-5 | sack.de

Buch, Englisch, 217 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Terrorism, Security, and Computation

Mehrotra / Huang / Mohan

Anomaly Detection Principles and Algorithms


Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-88445-5
Verlag: Springer International Publishing

Buch, Englisch, 217 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Terrorism, Security, and Computation

ISBN: 978-3-319-88445-5
Verlag: Springer International Publishing


This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses.

The authors also cover algorithms that address different kinds of problems of interest with single and multiple time series data and multi-dimensional data. New ensemble anomaly detection algorithms are  described, utilizing the benefits provided by diverse algorithms, each of which work well on some kinds of data.

 With advancements in technology and the extensive use of the internet as a medium for communications and commerce, there has been a tremendous increase in the threats faced by individuals and organizations from attackers and criminal entities. Variations in the observable behaviors of individuals (from others and from their own past behaviors) have been found to be useful in predicting potential problems of various kinds. Hence computer scientists and statisticians have been conducting research on automatically identifying anomalies in large datasets.

 This book will primarily target practitioners and researchers who are newcomers to the area of modern anomaly detection techniques. Advanced-level students in computer science will also find this book helpful with their studies.

Mehrotra / Huang / Mohan Anomaly Detection Principles and Algorithms jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 Introduction.- 2 Anomaly Detection.- 3 Distance-based Anomaly Detection Approaches.- 4 Clustering-based Anomaly Detection Approaches.- 5 Model-based Anomaly Detection Approaches.- 6 Distance and Density Based Approaches.- 7 Rank Based Approaches.- 8 Ensemble Methods.- 9 Algorithms for Time Series Data.- Datasets for Evaluation.- Datasets for Time Series Experiments.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.