Medvedev / Kopytov | The Theory of Lattice-Ordered Groups | Buch | 978-0-7923-3169-8 | sack.de

Buch, Englisch, Band 307, 400 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1690 g

Reihe: Mathematics and Its Applications

Medvedev / Kopytov

The Theory of Lattice-Ordered Groups

Buch, Englisch, Band 307, 400 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1690 g

Reihe: Mathematics and Its Applications

ISBN: 978-0-7923-3169-8
Verlag: Springer Netherlands


A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat­ ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al­ gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc­ tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam­ ple, partially ordered groups with interpolation property were intro­ duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.
Medvedev / Kopytov The Theory of Lattice-Ordered Groups jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Lattices.- 2 Lattice-ordered groups.- 3 Convex l-subgroups.- 4 Ordered permutation groups.- 5 Right-ordered groups.- 6 Totally ordered groups.- 7 Embeddings of lattice-ordered groups.- 8 Lattice properties in lattice-ordered groups.- 9 Varieties of lattice-ordered groups.- 10 Free l-groups.- 11 The semigroup of l-varieties.- 12 The lattice of l-varieties.- 13 Ordered permutation groups and l-varieties.- 14 Quasivarieties of lattice-ordered groups.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.