E-Book, Englisch, 629 Seiten
Reihe: ISSN
McCalpin Paleoseismology
2. Auflage 2009
ISBN: 978-0-08-091998-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 629 Seiten
Reihe: ISSN
ISBN: 978-0-08-091998-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Paleoseismology has become an important component of seismic risk analysis, which is mandated for nuclear power plants, dams, waste repositories, and other critical structures. This book is the first in the English language to be devoted solely to paleoseismology. It summarizes the development of the field from the 1960s to the present, encompassing material that is currently widely dispersed in journal articles.
* Includes a comprehensive review of the techniques currently used in paleoseismology
* Emphasizes practical methods of data collection and field studies
* Covers interpretation of field data based on current theory concerning fault segmentation and recurrence cycles
* Contains more than 170 line drawings and 50 photographs of paleoseismic phenomena
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Paleoseismology;4
3;Copyright Page;5
4;Contents;6
5;Contributors;14
6;Preface to the Second Edition;16
7;Chapter 1: Introduction to Paleoseismology;18
7.1;1.1. The Scope of Paleoseismology;18
7.1.1;1.1.1. Definition and Objectives;18
7.1.2;1.1.2. Organization and Scope of This Book;22
7.1.3;1.1.3. The Relation of Paleoseismology to Other Neotectonic Studies;22
7.2;1.2. Identifying Prehistoric Earthquakes from Primary and Secondary Evidence;25
7.2.1;1.2.1. Classification of Paleoseismic Evidence;25
7.2.2;1.2.2. The Incompleteness of the Paleoseismic Record;32
7.2.3;1.2.3. Underrepresentation Versus Overrepresentation of the Paleoseismic Record;34
7.3;1.3. Prehistoric Earthquake Dating and Recurrence;36
7.3.1;1.3.1. Dating Accuracy and Precision and Their Relation to Recurrence;38
7.3.2;1.3.2. Patterns in Recurrence;40
7.4;1.4. Estimating the Magnitude of Prehistoric Earthquakes;40
7.5;1.5. The Early Development of Paleoseismology, 1890-1980;42
7.6;Acknowledgments;44
8;Chapter 2A: Field Techniques in Paleoseismology-Terrestrial Environments;46
8.1;2A.1. Introduction;46
8.1.1;2A.1.1. Scope of the Chapter;46
8.1.2;2A.1.2. Preferred Sequence of Investigations;47
8.2;2A.2. Mapping Paleoseismic Landforms;47
8.2.1;2A.2.1. Locating Surface Deformation;47
8.2.2;2A.2.2. Mapping Deposits Versus Landforms in Seismic Areas;59
8.2.3;2A.2.3. Detailed Topographic Mapping;60
8.2.4;2A.2.4. Topographic Profiling;63
8.2.5;2A.2.5. Dating Methods for Late Quaternary Landforms;65
8.3;2A.3. Mapping Paleoseismic Stratigraphy;66
8.3.1;2A.3.1. Geophysical Techniques in Paleoseismology;67
8.3.2;2A.3.2. Trenching;78
8.3.3;2A.3.3. Drilling, Coring, Slicing, and Peeling;114
8.3.4;2A.3.4. Dating Methods for Late Quaternary Deposits;120
8.4;2A.4. Distinguishing Paleoseismic Features from Nonseismic or•Nontectonic Features;122
8.4.1;2A.4.1. Special Case: Stable Continental Interiors;125
8.5;2A.5. Specialized Subfields of Paleoseismology;128
8.5.1;2A.5.1. Archeoseismology;129
8.5.2;2A.5.2. Dendroseismology;134
9;Chapter 2B: Sub-Aqueous Paleoseismology;136
9.1;2B.1. Introduction;136
9.1.1;2B.1.1. Scope of the Chapter;136
9.2;2B.2. Mapping and Dating Paleoseismic Landforms Offshore;137
9.2.1;2B.2.1. Submarine Mapping and Imaging Methods;137
9.2.2;2B.2.2. Dating Submarine Structures, Landforms, and Deposits Using Paleoseismic Stratigraphy;143
9.3;2B.3. Locating Primary Evidence: Active Faulting and Structures;150
9.3.1;2B.3.1. Direct Fault Investigations;150
9.3.2;2B.3.2. Off-Fault Investigation;158
9.4;2B.4. Locating Secondary Evidence: Landslides, Turbidites, Submarine Tsunami Deposits;160
9.4.1;2B.4.1. Distinguishing Earthquake and Nonearthquake Triggering Mechanisms;162
9.4.2;2B.4.2. Turbidite Paleoseismology;168
9.4.3;2B.4.3. Offshore Tsunami Deposits;178
9.4.4;2B.4.4. Lacustrine Environments;180
9.4.5;2B.4.5. Submarine Landslides Triggered by Earthquakes;185
9.4.6;2B.4.6. Coeval Fault Motion and Fluid Venting Evidence;186
9.5;Acknowledgments;187
10;Chapter 3: Paleoseismology in Extensional Tectonic Environments;188
10.1;3.1. Introduction;188
10.1.1;3.1.1. Styles, Scales, and Environments of Extensional Deformation;189
10.1.2;3.1.2. The Earthquake Deformation Cycle in Extensional Environments;192
10.1.3;3.1.3. Historic Analog Earthquakes;195
10.2;3.2. Geomorphic Evidence of Paleoearthquakes;196
10.2.1;3.2.1. Tectonic Geomorphology of Normal Fault Blocks;198
10.2.2;3.2.2. Features of Bedrock Fault Planes and Other Rock Surfaces;201
10.2.3;3.2.3. Formation of Fault Scarps in Unconsolidated Deposits;203
10.2.4;3.2.4. Degradation of Fault Scarps in Unconsolidated Deposits;216
10.2.5;3.2.5. Spatial and Temporal Variations in Surface Displacement;221
10.2.6;3.2.6. Geomorphic Features Formed by Single and Recurrent Faulting;224
10.3;3.3. Stratigraphic Evidence of Paleoearthquakes;233
10.3.1;3.3.1. Characteristics of Near-Surface Normal Faults in Section;234
10.3.2;3.3.2. Distinguishing Tectonic from Depositional Features;238
10.3.3;3.3.3. Sedimentation and Soil Formation in the Fault Zone;243
10.3.4;3.3.4. Measuring Displacement on Normal Fault Exposures;259
10.3.5;3.3.5. Distinguishing Creep Displacement from Episodic Displacement;261
10.4;3.4. Dating Paleoearthquakes;262
10.4.1;3.4.1. Direct Dating of the Exposed Fault Plane;262
10.4.2;3.4.2. Direct Dating via Scarp Degradation Modeling;264
10.4.3;3.4.3. Age Estimates from Soil Development on Fault Scarps;268
10.4.4;3.4.4. Bracketing the Age of Faulting by Dating Geomorphic Surfaces;270
10.4.5;3.4.5. Bracketing the Age of Faulting by Dating Displaced Deposits;271
10.4.6;3.4.6. Bracketing the Age of Faulting by Dating Colluvial Wedges;272
10.4.7;3.4.7. Age Estimates from Cosmogenic Nuclides in Depth Profiles on Fault Scarps;276
10.5;3.5. Interpreting the Paleoseismic History by Retrodeformation;277
10.5.1;3.5.1. Types of Retrodeformations;278
10.5.2;3.5.2. Assumptions Used when Restoring Strata to their Prefaulting Geometry;278
10.5.3;3.5.3. Accounting for Soil Development in Retrodeformation;281
10.6;3.6. Distinguishing Tectonic from Nontectonic Normal Faults;283
10.6.1;3.6.1. Tectonic, but Nonseismogenic Normal Faults;283
10.6.2;3.6.2. Nontectonic, but Seismogenic Normal Faults;284
10.6.3;3.6.3. Nontectonic and Nonseismogenic Normal Faults;284
11;Chapter 4: Paleoseismology of Volcanic Environments;288
11.1;4.1. Introduction;288
11.2;4.2. Volcano-Extensional Structures;290
11.2.1;4.2.1. Worldwide Examples of Volcano-Extensional Structures;290
11.2.2;4.2.2. Central Volcanoes and Calderas;295
11.2.3;4.2.3. Volcanic Rift Zones;296
11.2.4;4.2.4. Magma-Induced Slope Instability;306
11.3;4.2.1. Worldwide Examples of Volcano-Extensional Structures;290
11.4;4.3. Criteria for Field Recognition of Volcano-Extensional Features;307
11.4.1;4.3.1. Results of Empirical and Numerical Modeling;307
11.4.2;4.3.2. Volcano-Tectonic Geomorphology;309
11.4.3;4.3.3. Geophysical Methods;311
11.4.4;4.3.4. Geodetic Remote-Sensing Techniques;311
11.5;4.4. Paleoseismological Implications and Methods;312
11.5.1;4.4.1. Excavation;313
11.5.2;4.4.2. Geochronology;315
11.5.3;4.4.3. Recurrence Intervals;315
11.5.4;4.4.4. Maximum Magnitude;316
11.6;4.5. Conclusions;329
11.7;4.6. Information on the Companion Web site;331
11.8;Acknowledgments;331
12;Chapter 5: Paleoseismology of Compressional Tectonic Environments;332
12.1;5.1. Introduction;332
12.1.1;5.1.1. Organization of This Chapter;333
12.1.2;5.1.2. Styles, Scales, and Environments of Deformation;333
12.1.3;5.1.3. The Earthquake Deformation Cycle of Reverse Faults;339
12.1.4;5.1.4. Historic Analog Earthquakes;340
12.2;5.2. Geomorphic Evidence of Reverse Paleoearthquakes;344
12.2.1;5.2.1. Initial Morphology of Reverse and Thrust Fault Scarps;345
12.2.2;5.2.2. Degradation of Thrust Fault Scarps;346
12.2.3;5.2.3. Interaction of Thrust Fault Scarps with Geomorphic Surfaces;347
12.2.4;5.2.4. Slip Rate Studies;351
12.2.5;5.2.5. Spatial and Temporal Variations in Surface Displacement;351
12.3;5.3. Stratigraphic Evidence of Reverse and Thrust Paleoearthquakes;354
12.3.1;5.3.1. General Style of Deformation on Reverse Faults in Section;355
12.3.2;5.3.2. Trenching Techniques;357
12.3.3;5.3.3. Structure and Evolution of Reverse-Fault Scarps;359
12.3.4;5.3.4. Structure and Evolution of Thrust Fault Scarps;363
12.3.5;5.3.5. Stratigraphic Bracketed Offset;367
12.3.6;5.3.6. Fault-Onlap Sedimentary Sequences;368
12.3.7;5.3.7. Summary of Stratigraphic Evidence for Thrust Paleoearthquakes;369
12.3.8;5.3.8. Distinguishing Creep Displacement from Episodic Displacement;369
12.4;5.4. Dating Paleoearthquakes;371
12.4.1;5.4.1. Direct Dating of the Exposed Fault Plane;371
12.4.2;5.4.2. Direct Dating via Scarp Degradation Modeling;371
12.4.3;5.4.3. Age Estimates from Soil Development on Fault Scarps;373
12.4.4;5.4.4. Bracketing the Age of Faulting by Dating Displaced Deposits;373
12.5;5.5. Interpreting the Paleoseismic History by Retrodeformation;375
12.5.1;5.5.1. Rigid-Block Retrodeformations;375
12.5.2;5.5.2. Plastic Retrodeformations;375
12.6;5.6. Distinguishing Seismogenic from Nonseismogenic Reverse Faults;378
12.6.1;5.6.1. Tectonic, but Nonseismogenic Reverse Faults;378
12.6.2;5.6.2. Nontectonic, but Seismogenic Reverse Faults;382
12.6.3;5.6.3. Nontectonic and Nonseismogenic Reverse Faults;382
12.7;5.7. Hazards Due to Reverse Surface Faulting;383
12.8;5.8. Paleoseismic Evidence of Coseismic Folding;385
12.8.1;5.8.1. Geomorphic Evidence of Active Surface Folding;385
12.8.2;5.8.2. Stratigraphic Evidence of Active Surface Folding;388
12.8.3;5.8.3. Assessing Seismic Hazards from Blind Thrusts;392
12.9;5.9. Paleoseismology of Subduction Zones;396
12.9.1;5.9.1. Introduction;396
12.9.2;5.9.2. Segmentation of Subduction Zones;399
12.9.3;5.9.3. Surface Faulting: Upper Plate Versus Plate-Boundary Structures;400
12.9.4;5.9.4. Historic Subduction Earthquakes as Modern Analogs for Paleoearthquakes;402
12.9.5;5.9.5. The Earthquake Deformation Cycle in Subduction Zones;405
12.10;5.10. Late Quaternary Sea Level;407
12.10.1;5.10.1. Sea-Level Index Points along Erosional Shorelines;409
12.10.2;5.10.2. Sea-Level Index Points Along Depositional Shorelines;410
12.11;5.11. The Coseismic Earthquake Horizon;412
12.11.1;5.11.1. Characteristics of Coseismic Earthquake Horizons;412
12.11.2;5.11.2. Earthquake-Killed Trees;415
12.11.3;5.11.3. Tsunami Deposits;415
12.11.4;5.11.5. Summary of Stratigraphic Evidence for Paleoseismicity;419
12.12;5.12. Paleoseismic Evidence of Coseismic Uplift;420
12.12.1;5.12.1. Alaska;421
12.12.2;5.12.2. Cascadia Subduction Zone;423
12.13;5.13. Paleoseismic Evidence of Coseismic Subsidence;428
12.13.1;5.13.1. Alaska;428
12.13.2;5.13.2. Cascadia Subduction Zone;432
12.13.3;5.13.3. Ambiguities in Characterizing Subduction Paleoearthquakes;436
13;Chapter 6: Paleoseismology of Strike-Slip Tectonic Environments;438
13.1;6.1. Introduction;438
13.1.1;6.1.1. Styles, Scales, and Environments of Deformation;439
13.1.2;6.1.2. Segmentation of Strike-Slip Faults;444
13.1.3;6.1.3. The Earthquake Deformation Cycle of Strike-Slip Faults;444
13.1.4;6.1.4. Historic Analog Earthquakes;445
13.2;6.2. Geomorphic Evidence of Paleoearthquakes;449
13.2.1;6.2.1. Landforms Used as Piercing Points;450
13.2.2;6.2.2. Using Lateral Offsets to Calculate Long-Term Slip Rates;469
13.2.3;6.2.3. Spatial and Temporal Variations in Surface Displacement;473
13.2.4;6.2.4. Reconstructing Individual Earthquake Displacements;476
13.3;6.3. Stratigraphic Evidence of Paleoearthquakes;479
13.3.1;6.3.1. General Style of Deformation on Strike-Slip Faults in Section;480
13.3.2;6.3.2. Sedimentation and Weathering in Strike-Slip Fault Zones;481
13.3.3;6.3.3. Trenching Techniques;485
13.3.4;6.3.4. Stratigraphic Indicators of Paleoearthquakes;490
13.3.5;6.3.5. Measuring Lateral Displacements from Stratigraphic Data;496
13.3.6;6.3.6. Distinguishing Creep Displacement from Episodic Displacement;506
13.4;6.4. Dating Paleoearthquakes;506
13.5;6.5. Interpreting the Paleoseismic History by Retrodeformation;508
13.5.1;6.5.1. Retrodeforming the Trench Log;510
13.6;6.6. Distinguishing Seismogenic from Nonseismogenic Strike-Slip Faults;512
13.6.1;6.6.1. Tectonic, But Nonseismogenic Strike-Slip Faults;512
13.6.2;6.6.2. Nontectonic and Nonseismogenic Strike-Slip Faults;513
14;Chapter 7: Using Liquefaction-Induced and Other Soft-Sediment Features for Paleoseismic Analysis;514
14.1;7.1. Introduction;514
14.2;7.2. Overview of the Formation of Liquefaction-Induced Features;516
14.2.1;7.2.1. Process of Liquefaction and Fluidization;520
14.2.2;7.2.2. Factors Affecting Liquefaction Susceptibility and Effects of Fluidization;522
14.3;7.3. Criteria for an Earthquake-Induced Liquefaction Origin;526
14.4;7.4. Historic and Prehistoric Liquefaction-Selected Studies;527
14.4.1;7.4.1. Coastal South Carolina;527
14.4.2;7.4.2. New Madrid Seismic Zone;535
14.4.3;7.4.3. Wabash Valley Seismic Zone;552
14.4.4;7.4.4. Coastal Washington State;557
14.5;7.5. Features Generally of Nonseismic or Unknown Origin;563
14.5.1;7.5.1. Terrestrial Disturbance Features;564
14.5.2;7.5.2. Features Formed in Subaqueous Environments;565
14.5.3;7.5.3. Features Formed by Weathering;573
14.5.4;7.5.4. Features Formed in a Periglacial Environment;574
14.6;7.6. Estimation of Strength of Paleoearthquakes;575
14.6.1;7.6.1. Association with Modified Mercalli Intensity;575
14.6.2;7.6.2. Magnitude Bound;575
14.6.3;7.6.3. Engineering-Based Procedures;577
14.6.4;7.6.4. Overview of Estimates of Magnitude;580
14.6.5;7.6.5. Negative Evidence;581
15;Chapter 8: Using Landslides for Paleoseismic Analysis;582
15.1;8.1. Introduction;582
15.2;8.2. Identifying Landslides;583
15.3;8.3. Determining Landslide Ages;585
15.3.1;8.3.1. Historical Methods;585
15.3.2;8.3.2. Dendrochronology;585
15.3.3;8.3.3. Radiometric and Cosmogenic Dating;586
15.3.4;8.3.4. Lichenometry;587
15.3.5;8.3.5. Weathering Rinds;587
15.3.6;8.3.6. Pollen Analysis;587
15.3.7;8.3.7. Geomorphic Analysis;587
15.4;8.4. Interpreting an Earthquake Origin for Landslides;588
15.4.1;8.4.1. Regional Analysis of Landslides;588
15.4.2;8.4.2. Landslide Morphology;591
15.4.3;8.4.3. Sackungen;592
15.4.4;8.4.4. Sediment from Earthquake-Triggered Landslides;594
15.4.5;8.4.5. Landslides That Straddle Fault;595
15.4.6;8.4.6. Precariously Balanced Rocks;595
15.4.7;8.4.7. Speleoseismology;596
15.4.8;8.4.8. Summary;597
15.5;8.5. Analysis of the Seismic Origin of a Landslide;597
15.5.1;8.5.1. Physical Setting of Landslides in the New Madrid Seismic Zone;598
15.5.2;8.5.2. Geotechnical Investigation;598
15.5.3;8.5.3. Static (Aseismic) Slope-Stability Analysis;600
15.5.4;8.5.4. Dynamic (Seismic) Slope-Stability Analysis;601
15.5.5;8.5.5. Analysis of Unknown Seismic Conditions;612
15.6;8.6. Interpreting Results of Paleoseismic Landslide Studies;613
15.6.1;8.6.1. Characteristics of Landslides Triggered by Earthquakes;613
15.6.2;8.6.2. Interpreting Earthquake Magnitude and Location;616
15.7;8.7. Final Comments;617
16;Subject Index;620
17;International Geophysics Series;632
18;Color Plates;636
19;Chapter 9: Application of Paleoseismic Data to Seismic Hazard Assessment and Neotectonic Research;671
19.1;9.1. Introduction;671
19.1.1;9.1.1. Seismic Hazard Assessments: A Brief Description;673
19.2;9.2. Estimating Paleoearthquake Magnitude;675
19.2.1;9.2.1. Methods Using Primary Evidence;676
19.2.2;9.2.2. Methods Using Secondary Evidence;692
19.3;9.3. Paleoseismic Slip Rates and Recurrence;692
19.3.1;9.3.1. Constructing Slip History Diagrams: Temporal Variations in Displacement at a Point;693
19.3.2;9.3.2. Slip Rates;696
19.3.3;9.3.3. Slip-Along-Strike Diagrams: Displaying Both Spatial and Temporal Variations in Displacement Along Strike;702
19.3.4;9.3.4. Recurrence Estimation Using Slip Rates;706
19.3.5;9.3.5. Recurrence Estimation Using Numerical Dating of Paleoearthquakes;707
19.3.6;9.3.6. Constructing Space-Time Diagrams;710
19.3.7;9.3.7. Interpreting Space-Time Diagrams for Contemporaneity of Paleoearthquakes and Multisegment Ruptures;713
19.4;9.4. Fault Segmentation;714
19.4.1;9.4.1. Earthquake Segments;717
19.4.2;9.4.2. Fault Segments;717
19.4.3;9.4.3. Segment Boundaries;719
19.4.4;9.4.4. Behavior of Segment Boundaries;719
19.4.5;9.4.5. Segmentation of Historic Surface Ruptures;721
19.4.6;9.4.6. Is the Segmentation Concept Useful?;721
19.5;9.5. Models of Fault Behavior;724
19.5.1;9.5.1. Variable Slip Models;725
19.5.2;9.5.2. Uniform Slip Models;727
19.6;9.6. Models of Earthquake Recurrence;728
19.6.1;9.6.1. Statistical Analysis of Paleoearthquake Chronologies;730
19.6.2;9.6.2. Temporal Clustering, Fault ''Contagion," and Causative Mechanisms for Irregular Recurrence;736
19.6.3;9.6.3. Using Recurrence Data to Estimate Conditional Probability of Future Rupture;740
19.7;9.7. Use of Paleoseismic Data in Deterministic and Probabilistic Seismic Hazard Analyses;742
19.7.1;9.7.1. Deterministic SHAs;742
19.7.2;9.7.2. Probabilistic SHAs as National Seismic Hazard Maps;745
19.7.3;9.7.3. Probabilistic SHAs for Sites and Regions: The Art of Logic Trees;746
19.7.4;9.7.4. Probabilistic Fault Displacement Hazard;761
19.8;9.8. Site Studies for Surface Rupture;762
19.8.1;9.8.1. Determine Whether Quaternary Faults Exist at a Site;764
19.8.2;9.8.2. Accurately Identify and Locate the Faults;764
19.8.3;9.8.3. Determine the Age of Most Recent Surface Rupture and Activity Class of the Faults;767
19.8.4;9.8.4. Using Paleoseismic Data on Displacement for Recommending Fault Setback Distances;770
19.9;9.9. Paleoseismic Data Applied to Neotectonic Research;772
19.10;9.10. Current Issues and Future Prospects in Paleoseismology;773
19.10.1;9.10.1. Recognizing Paleoearthquakes;773
19.10.2;9.10.2. Estimating Displacement/Magnitude;774
19.10.3;9.10.3. Estimating Age/Recurrence;775
19.10.4;9.10.4. Testing Fault Models;775
19.10.5;9.10.5. Scientific Policy;776
20;Appendix 1: Earthquake Magnitude Scales;777
20.1;A.1.1. Local (Richter) Magnitude (ML);777
20.2;A.1.2. Surface-Wave Magnitude (MS);778
20.3;A.1.3. Body-Wave Magnitude (MbLg);778
20.4;A.1.4. Moment Magnitude (MW OR M);779
21;Appendix 2: Radiocarbon Sampling Techniques;781
21.1;A.2.1. How much to Sample;781
21.2;A.2.2. Sample Pretreatment;781
22;Appendix 3: Field Evaluation of Liquefaction Susceptibility of Soils with High Fines Content;783
23;References;785
24;Color Plates;636