Buch, Englisch, 532 Seiten, Format (B × H): 154 mm x 233 mm, Gewicht: 804 g
From Linear Models to Machine Learning
Buch, Englisch, 532 Seiten, Format (B × H): 154 mm x 233 mm, Gewicht: 804 g
Reihe: Chapman & Hall/CRC Texts in Statistical Science
ISBN: 978-1-4987-1091-6
Verlag: CRC Press
This text provides a modern introduction to regression and classification with an emphasis on big data and R. Each chapter is partitioned into a main body section and an extras section. The main body uses math stat very sparingly and always in the context of something concrete, which means that readers can skip the math stat content entirely if they wish. The extras section is for those who feel comfortable with analysis using math stat.
Zielgruppe
This book is intended for professionals and students in statistics, data science, business analytics, biotech, finance, and political science. It also would be useful as a graduate text.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik Mathematik Stochastik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
Introduction. Linear Regression Models. Generalized Linear Models. Nonparametric Models. Model Parsimony. Use of Regression for Understanding. Large Data. Miscellaneous Topics. Appendix: Quick R. Appendix: Math Stat. Appendix: Matrix Algebra.