Massopust | Interpolation and Approximation with Splines and fractals | Buch | 978-0-19-533654-2 | www2.sack.de

Buch, Englisch, 336 Seiten, Format (B × H): 234 mm x 160 mm, Gewicht: 590 g

Massopust

Interpolation and Approximation with Splines and fractals


Erscheinungsjahr 2010
ISBN: 978-0-19-533654-2
Verlag: Oxford University Press

Buch, Englisch, 336 Seiten, Format (B × H): 234 mm x 160 mm, Gewicht: 590 g

ISBN: 978-0-19-533654-2
Verlag: Oxford University Press


This textbook is intended to supplement the classical theory of uni- and multivariate splines and their approximation and interpolation properties with those of fractals, fractal functions, and fractal surfaces. This synthesis will complement currently required courses dealing with these topics and expose the prospective reader to some new and deep relationships. In addition to providing a classical introduction to the main issues involving approximation and
interpolation with uni- and multivariate splines, cardinal and exponential splines, and their connection to wavelets and multiscale analysis, which comprises the first half of the book, the second half will describe fractals, fractal functions and fractal surfaces, and their properties. This also includes
the new burgeoning theory of superfractals and superfractal functions. The theory of splines is well-established but the relationship to fractal functions is novel. Throughout the book, connections between these two apparently different areas will be exposed and presented. In this way, more options are given to the prospective reader who will encounter complex approximation and interpolation problems in real-world modeling. Numerous examples, figures, and exercises accompany the
material.

Massopust Interpolation and Approximation with Splines and fractals jetzt bestellen!

Zielgruppe


Students and scholars of mathematics, partiularly the study of communalities between splines and fractals in interpolation and approximation theory, fractal functions and fractal surfaces


Autoren/Hrsg.


Weitere Infos & Material


1: The General Interpolation and Approximation Problem
2: Splines
3: Interpolation in Rs, s > 1
4: Fractals
5: Fractal Functions
6: Fractal Surfaces
7: Superfractals
8: Superfractal Functions


Massopust, Peter
Peter Massopust, Senior Research Scientist, Marie Curie Excellence in Research Team MAMEBIA

Peter Massopust holds a Master of Science in physics and a Ph.D. in applied mathematics. Dr. Massopust is best known for his work in fractal geometry, in particular fractal functions and fractal surfaces, and wavelet theory. His current research interests focus on complex splines and wavelets, and their applications to signal and image processing. He is currently a Senior Research Scientist on the Marie Curie Excellence in Research Team
MAMEBIA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.