Masson / Denoeux | Belief Functions: Theory and Applications | Buch | 978-3-642-29460-0 | sack.de

Buch, Englisch, Band 164, 444 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 686 g

Reihe: Advances in Intelligent and Soft Computing

Masson / Denoeux

Belief Functions: Theory and Applications

Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France 9-11 May 2012

Buch, Englisch, Band 164, 444 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 686 g

Reihe: Advances in Intelligent and Soft Computing

ISBN: 978-3-642-29460-0
Verlag: Springer


The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories.

This volume contains the proceedings of the 2 International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.

Masson / Denoeux Belief Functions: Theory and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


From the content: On belief functions and random sets.- Evidential Multi-label classification method using the Random k-Label sets approach.- An Evidential Improvement for Gender Profiling.- An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics.- An evidential pattern matching approach for vehicle identification.- Comparison between a Bayesian approach and a method based on continuous belief functions for pattern recognition.- Prognostic by classification of predictions combining similarity-based estimation and belief functions.- Adaptative initialisation of a EvKNN classification algorithm.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.