Buch, Englisch, Band 127, 431 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1780 g
Buch, Englisch, Band 127, 431 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1780 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-0-387-97430-9
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1: Two-Dimensional Manifolds.- 2: The Fundamental Group.- 3: Free Groups and Free Products of Groups.- 4: Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces. Applications.- 5: Covering Spaces.- 6: Background and Motivation for Homology Theory.- 7: Definitions and Basic Properties of Homology Theory.- 8: Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory.- 9: Homology of CW-Complexes.- 10: Homology with Arbitrary Coefficient Groups.- 11: The Homology of Product Spaces.- 12: Cohomology Theory.- 13: Products in Homology and Cohomology.- 14: Duality Theorems for the Homology of Manifolds.- 15: Cup Products in Projective Spaces and Applications of Cup Products. Appendix A: A Proof of De Rham's Theorem.- Appendix B: Permutation Groups or Tranformation Groups.