E-Book, Englisch, 606 Seiten
Masís Interpretable Machine Learning with Python
2. Auflage 2023
ISBN: 978-1-80324-362-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Build explainable, fair, and robust high-performance models with hands-on, real-world examples
E-Book, Englisch, 606 Seiten
ISBN: 978-1-80324-362-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Interpretable Machine Learning with Python".
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
Weitere Infos & Material
Table of Contents - Interpretation, Interpretability and Explainability; and why does it all matter?
- Key Concepts of Interpretability
- Interpretation Challenges
- Global Model-agnostic Interpretation Methods
- Local Model-agnostic Interpretation Methods
- Anchors and Counterfactual Explanations
- Visualizing Convolutional Neural Networks
- Interpreting NLP Transformers
- Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis
- Feature Selection and Engineering for Interpretability
- Bias Mitigation and Causal Inference Methods
- Monotonic Constraints and Model Tuning for Interpretability
- Adversarial Robustness
- What's Next for Machine Learning Interpretability?