Buch, Englisch, Band 15, 376 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 728 g
Buch, Englisch, Band 15, 376 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 728 g
Reihe: London Mathematical Society Monographs
ISBN: 978-0-19-853498-3
Verlag: OUP Oxford
It has been known for some time that many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection (for example, the Korteweg-de Vries and nonlinear Schrödinger equations are reductions of the self-dual Yang-Mills equation). This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It has two central themes: first, that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and second that twistor theory provides a uniform geometric framework for the study of B¨ acklund tranformations, the inverse scattering method, and other such general constructions of integrability theory, and that it elucidates the connections between them.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik




