Martínez Abejón / González | Tauberian Operators | Buch | 978-3-7643-8997-0 | sack.de

Buch, Englisch, Band 194, 248 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 642 g

Reihe: Operator Theory: Advances and Applications

Martínez Abejón / González

Tauberian Operators


1. Auflage. 2009
ISBN: 978-3-7643-8997-0
Verlag: Springer

Buch, Englisch, Band 194, 248 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 642 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-7643-8997-0
Verlag: Springer


Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James’ characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open.

This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory – the characterization of conservative matrices that sum no bounded divergent sequences – by means of functional analysis techniques. One of those solutions is due to Crawford [45], who considered the second conjugate of the operator associated with one of those matrices.

Martínez Abejón / González Tauberian Operators jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


The origins of tauberian operators.- Tauberian operators. Basic properties.- Duality and examples of tauberian operators.- Tauberian operators on spaces of integrable functions.- Some applications.- Tauberian-like classes of operators.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.